Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радиация

    Источниками инициирования взрыва являются горящие или накаленные тела, электрические разряды, тепло химических реакций и механических воздействий, искры от удара и трения, ударные волны, солнечная радиация, электромагнитные и другие излучения. [c.21]

    При рассмотрении чертежей архитектурно-строительной части проекта необходимо проверять, обеспечены ли требования огнестойкости здания, нет ли подвалов в зоне производственных цехов и установок, соблюдены ли требования о максимальном выносе технологического оборудования на наружные площадки, как взаимно расположены здания и сооружения цехов и соблюдены ли противопожарные разрывы между ними обеспечена ли огнестойкость металлоконструкций наружных этажерок, несущих конструкций под аппаратами внутри цеха, а также юбок колонных аппаратов, газонепроницаемость стен, отделяющих взрывоопасные помещения от смежных помещений каковы типы полов, их соответствие требованиям искробезопасности, способ защиты от агрессивных продуктов устройство поддонов под аппаратами с агрессивными продуктами обеспечен ли обслуживающий персонал вспомогательными и бытовыми помещениями, комнатами отдыха, гигиены женщин, санитарными помещениями, столовыми и правильно ли они расположены по отношению к взрывоопасным помещениям и наружным установкам запроектированы ли в открытых насосных утепленные полы, легкие навесы и съемные щиты для защиты насосных агрегатов от атмосферных осадков, солнечной радиации, а также снежных и песчаных заносов есть ли отапливаемые помещения [c.52]


    Процесс теплопередачи в камере конвекции складывается из передачи тепла от газового потока к конвекционным трубам конвекцией и радиацией. Основное значение в конвекционной камере имеет конвекционный теплообмен. Однако излучение газов и кладки также заметно влияет на процесс теплоотдачи. [c.127]

    Довольно скоро было установлено, что радиоактивное излучение урана и тория имеет сложную природу. Под действием магнитного поля лучи отклонялись таким образом, что можно было различить три типа излучения. Резерфорд назвал эти три составляющие радиации первыми тремя буквами греческого алфавита альфа-лучи, бета-лучи и гамма-лучи. [c.153]

    ТЕПЛОВОЙ РАСЧЕТ КАМЕРЫ РАДИАЦИИ [c.116]

    В современных трубчатых печах основную роль играет передача тепла излучением или радиацией. Поэтому важнейшей частью печи является камера радиации, одновременно выполняющая роль топочной камеры. Процесс теплоотдачи в радиантной камере трубчатой печи складывается пз теплоотдачи радиацией и свободной конвекцией, Однако основную роль играет теплоотдача радиацией, а удельный вес теплоотдачи конвекцией сравнительно невелик. [c.116]

    Диоксид серы. Фотохимические превращения диоксида серы приводят к образованию аэрозолей, а рассеяние и поглощение радиации аэрозолями в атмосфере обусловливают снижение видимости. Туман серной кислоты и другие сульфатные части- [c.31]

    Угловой коэффициент к показывает, какая доля тепла поглощается трубами от того тепла, которое в тех же условиях поглотила бы плоская заэкранированная поверхность. Численное значение углового коэффициента зависит от отношения шага труб к их диаметру и от числа рядов труб в экране и мо/кет определяться по графику (рис. 78). Рассматривая рис. 78, можно видеть, что теплоотдача к экранным трубам складывается из прямой радиации и отраженного излучения кладки, на которой размещены трубы. [c.122]

    Для шахматных пучков коэффициент теплоотдачи радиацией газов мо кет определяться по приближенной эмпирической формуле, предложенной автором  [c.128]

    В современных печах потери тепла излучением составляют 2—5%, в печах старого типа они достигали 7—12%. Около 75% и более от общей величины потерь тепла излучением теряется в камере радиации и до 25% в камере конвекции. [c.115]


    Поглощающая среда отдает часть своего тепла лучеиспусканием. жранным трубам и кладке печи. Кладка в свою очередь излучает тепло, полученное от поглощающей среды, на экранные трубы. Но так как все пространство камеры радиации заполнено поглощающей средой, то часть энергии, излучаемой кладкой, поглощается поглощающей средой, а часть проходит сквозь нее и достигает экрана. Таким образом, экран получает не все тепло, излучаемое кладкой. Кладка имеет некоторую равновесную температуру выше температуры экрана и ниже температуры поглощающей среды. [c.117]

    Полученное значение коэффициента теплоотдачи радиацией не учитывает радиации кладки. За счет излучения радиацией кладки коэффициент теплоотдачи в камере конвекции увеличивается примерно на 10%. Тогда суммарпттй коэффициент теплоотдачи в камере конвекции составит [c.129]

    Принимаем потери тепла излучением — 3%, в том числе потери тепла камерой радиации 7 = 2,5%. Потерями тепла от химической и механической неполноты горепия пренебрегаем ( з = О и 4 0). [c.136]

    На фиг. 177 изображена трубчатая печь обычного типа. Под потолком ее укреплено два ряда трубок радиационной системы 1, которые подвергаются действию радиации. Конвективный пучок 2 [c.263]

    Вследствие поглощающей способности, слой озона выполняет роль фильтра для ультрафиолетовой радиации. Человек не мог бы существовать в условиях солнечной ультрафиолетовой радиации, если бы она не была ослаблена слоем озона. [c.29]

    Расчет суммарной теплоотдачи в топочной камере сводится к определению коэффициента прямой отдачи р., представляющего собой, как отмечалось ранее, отношение общего количества тепла, переданного радиантным трубам (слагающегося из теплоотдачи радиацией и свободной конвекцией), к об1цему полезному тенлу, внесенному топливом  [c.117]

    Харрис и Виллард [126] показали, что эффект горячих радикалов увеличивается при 1849 А, чего и можно было ожидать для этой более жесткой радиации. В этом случае квантовый выход СН4 повышается примерно в 12 раз . Весьма вероятно, что во всех этих случаях избыточная энергия радикала СН3 находится в виде колебательной энергии. Для такого утверждения есть все основания. [c.347]

    Современная трубчатая ночь, как нраиило, состоит из двух камер каморы сгорания нли радиации, в которой ся мгается топливо и размещаются радиантные трубы, и камеры конвекции, в которую поступают дымовые газы ии камеры сгорания н и которой размещаются конвекционные трубы. [c.88]

    Для уменьшения внешнего притока тепла изолированные от солнечной радиации аппараты со сжиженным газом следует окрашивать в светлые тона или облицовывать полированным алюминием, обладающим большей отражательной способностью. [c.177]

    Преодолеть со]1ротивлепце на пути движения газов от камеры радиации до дылювой трубы можно за счет естественной или искусственной тяги. Естественная тяга осуществляется дымовой трубой, искусственная — дымососами, отсасывающими дымовые газы пз кои-векциопной камеры н подающими нх через боров и дымовую трубу Высота дымовой трубы рассчитывается но формуле [c.134]

    При сжигании больших объемов горючих газов на факелах к особенно при аварийных их сбросах из технологического оборудования возникает опасность загораний и взрывов на территории предприятия от воздействия тепла, излучаемого открытым факелом, и от искрообразования. Опасность представляет оборудование и особенно емкости и трубопроводы с горючими и легковоспламеняющимися жидкостями или газами, находящиеся в зоне действия факела, так как тепловая радиация и повышение температуры наружной поверхности стенок могут привести к нагреву до опасных пределов продуктов, находящихся в аппаратуре. [c.201]

    Тепловое напряжение в расчетной точке q определяется как сумма солнечной радиации дс и теплового напряжения от факела при этом оно должно быть равно или меньше предельно допустимого теплового напряжения п.д, принимаемого из условий работы. [c.233]

    Коэффициент теплоотдачи радиацией газов зависит от средней температуры газового потока и степки труб, от концеитрации трехатомных газов, являющейся функцией коэффициента избытка воздуха, от эффективной толщины газового слоя. Значения коэффициента теплоотдачи радиацией газов составляют от 7 до 21 вт1м X X °С или от 6 до 18 ккал/м . ч. °С. [c.128]

    Предельно допустимое тепловое напряжение, создаваемое факелом п.д. ( 1, определяется как разность между предельно допустимым тепловым напряжением д .я н напряжением, создаваемым солнечной радиацией с- [c.234]

    Обычно при горизонтальном своде тепловая нагрузка потолочных труб больше в центре печи и меньше на концах, т. е. ближе к углам. Наклонный свод должен устранить эту перавномерпость. Процесс горения в этих печах может проводиться в выносных карборундовых муфелях либо непосредственно в камере радиации. Эксплуатация печей с наклонным сводом и обследование их работы показали, что применение наклонного свода не дает желаемого аффекта в части выравнивания температур. Нагреватель этого типа удовлетворяет требованиям нагревательной печи, однако он не достаточно подходит в качестве реакционно-нагревательной печи, например для термического крекинга. В условиях термического крекинга часто наблюдается ирогар труб потолочного экрана. За последние годы печи с наклонным сводом с целью увеличения тепловой мощности стали модернизировать путем установки дополнительных стенных экранов и панельных горелок беспламенного горения. [c.94]


    Цилиндрическая печь (рис. 57) отличается вертикальным расположением труб по периферии. В этой печи тепловая нагрузка экрана распределена равномерно в радиальном направлении, но по длине труб она меняется, уменьшаясь снизу вверх при нижнем расположении форсунок. Для усиления теплоотдачи к верхней части труб на выходе из камеры радиации расположен радиирующий конус. Камера конвекции в этих печах обычно отсутствует и заменяется воздухоподогревателем, так как температура газов, покидающих камеру радиации, в этих печах обычно низкая. [c.94]

    Теплоотдача н камере радиации в большой степепи зависит от температуры поглощающей среды. Наиболее высоких телшератур поглощающая среда может достигать в неэкранировапной топке, т. е. в том случае, когда все тепло, выделенное топливом, идет только на нагрев продуктов горепия (максимальная температура горения). В экранированных топках температура поглощающей среды всегда ниже этой предельной температуры н достигает некоторого равновесного значения, находящегося в интервале между максимальной температурой горения и температурой газов на выходе из топки. Эта равновесная температура, названная средней эффективной температурой среды, тем ниже, чем больше степень экранирования топки и чем ниже коэффициент избытка воздуха. [c.117]

    Составим уравнение теплового баланса топки. Часть тепла, внесенного в топку топливом (считая от температуры исходной системы), передается радиантным трубам радиацией и свободной конвекцией ( p), а остальная часть уносится продуктами горения за пределы топочной камеры [5G p (Гр — Го) 1  [c.118]

    Уравнение теплопередачи должно учитывать теплоотдачу экрану радиацией и конвекцией. Передача тепла радиацией определяется уравнением Стефана-Больцмана, для решения которого необходимо знать температуры излучающего и поглощающего источников. Температура последнего, т. е. радиантных труб, обычно известна, но неизвестна средняя эффективная температура продуктов горения (но1 ло1цающен среды). Выше было отмечено, что изменение температур в TOHi e подчиняется сложному закону. Предполагается, что в больших топочных нространстпах процесс теплоотдачи определяется периферийными температурами, в данном случае температурой газов 1Ш перевале. Ото не означает, одпако, что температура ) газов на перевале раина средней эффективной температуре поглощающей среды последняя всегда вьппе. В связи с этим Н. И. Белоконь вводит понятие эквивалентной абсолютно черной поверхности, излучение которой при температуре газов на выходе из топки (на перевале) равно всему прямому и отраженному излучению. Другими словами, общее количество тепла, передаваемого эквивалентной [c.118]

    Здесь p.ji — тепло, переданное экрану радиацией, в ккал/ч p, к —тепло, переданное экрану свободной конвекцией, в ккал1ч  [c.119]

    Сопротивление иа пути движения газов в нечи складывается из следующих величин 1) разрежения в камере радиации 2) сопроти-влоние камеры конвекции 3) сопротивления газоходов 4) сопротивления воздухоподогревателя 5) сопротивления дымовой трубы. [c.133]

    Определение размеров экрана и камерк радиации [c.137]

    По ориентировочным данным, припсденным на стр. 133, принимаем, что разреженно в кам ро радиации 3. пм вод. ст. 30 н/м потеря нанора в камере к0нв( кции 7 мм вод. см. — 70 и/.н . [c.144]

    В последнее иремя для интенсификации химнко-технологнче-ских промсссов разработаны аппараты п мащнны, действие которых основано на новых физических принципах — использовании низкотемпературной плазмы, мембран с избирательной способностью созданы оборудование с применением ультразвуковых воздействий, аппаратура с использованием радиации, электрических и магнитных полей. [c.28]

    Химикам часто необходимо выяснить, является ли данная реакция на самом деле конечным результатом некоторого числа промежуточных реакций. В прикладной химической кинетике такие вопросы не рассматриваются все, что нам нужно — это иметь кинетический закон, пригодный для использования. Мы еще не дали точного определения скорости реакции, но можно полагать, что это скорость, с которой продукты образуются из реагентов. Скорость реакции зависит от состава реагирующей смеси, температуры, давления, и, возможно, от других величин, например, от характера и интенсивности радиации. Далее мы будем называть температуру и давление или любую эквивалентную комбинацию этих двух величин термодинамическими переменными, а величины тина pH или концентрации катализатора — параметрическими переменными. Меры состава или концентрации реагирующих веществ будут определены ниже. Урав-ненне (II. 4) является полным, если в кинетический закон описываемой им реакции, кроме концентраций веществ А ,. .., 4 , не входят никакие другие концентрации. Когда необходимо принимать во [c.16]

    Люминоме грическое число характеризует интенсивность теп — левого излучения пламени при сгорании топлива, т.е. радиацию пламени, является также косвенным показателем склонности топлива к нагарообразованию. Оно определяется путем сравнения с яркостью пламени эталонных топлив — тетралина и изооктана (ЛЧ для Т-6>45, Т-1>50, ТС-1, Т-2 и РТ > 55). [c.122]

    Многие органические соединения (альдегиды, кетоны, пероксиды и ацетилнитраты) фотохимически активны в атмосфере. При поглощении ими солнечной радиации образуются свободные радикалы, дальнейшие превращения которых даютмно- [c.33]

    Так как коллоидные частицы имеют слабый отрицательный заряд, хлопья коагулянтов — слабый положительный заряд, то между ними возникает взаимное притяжение, способствующее формированию крупных частиц. В процессе коагуляционной очистки сточных вод происходит соосаждение с минеральными примесями за счет адсорбции последних на поверхности оседающих частиц. Из воды удаляются соединения железа (на 78—89 %), фосфора (на 80—90 %), мышьяка, цинка, меди, фтора и других. Снижение по ХПК составляет 90—93 %, а по БПКб —80—85 % Степень очистки зависит от условий воздействия на коагуляцию дисперсной системы радиации, магнитного и электрического полей, введения частиц, взаихмодействующих с системой и стабилизирующих ее. Воздействие излучения, как и окисление органических соединений озоном способствует разрушению поверхностно-активных веществ (ПАВ), являющихся стабилизаторами твердых и жидких частиц, загрязняющих сточные воды. Под воздействием электрического поля происходит образование агрегатов размером до 500—1000 мкм в системах Ж — Т, Ж] — Ж2 и Г — Т. [c.479]


Смотреть страницы где упоминается термин Радиация: [c.89]    [c.89]    [c.98]    [c.128]    [c.130]    [c.132]    [c.133]    [c.138]    [c.138]    [c.169]    [c.481]   
Смотреть главы в:

Твёрдые смазочные материалы и антифрикционные покрытия -> Радиация

Микробиология -> Радиация


Переработка нефти (1947) -- [ c.245 ]

Физика и химия в переработке нефти (1955) -- [ c.118 ]

Энциклопедия полимеров том 1 (1972) -- [ c.0 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.0 ]

Сочинения Введение к полному изучению органической химии Том 2 (1953) -- [ c.486 ]

Генетика человека Т.3 (1990) -- [ c.272 ]

Методы исследований в иммунологии (1981) -- [ c.421 , c.427 ]

Инженерная лимнология (1987) -- [ c.0 ]

Химия окружающей среды (1982) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте