Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярные группы, ориентаци

    Используя факт ориентации молекул некоторых веществ, можно найти значение толщины слоя, определяющего поверхностное натяжение. Так как а для всех веществ, имеющих парафиновую цепочку, независимо от их полярности равно а парафинов, то межфазное натяжение определяет только та часть ориентированной молекулы, которая непосредственно граничит с другой фазой. Толщину слоя, определяющего поверхностное натяжение, можно считать равной длине углеводородной цепи в два-три углеродных атома. Например, у диметилформамида, уксусного ангидрида, ацетонитрила, в которых ориентируется лишь метильная или этильная группы, значение о выше, чем у соединений, содержащих более длинную парафиновую цепочку, однако ниже, чем следовало бы иметь по уравнению (13). Таким образом, хотя алкильная группа их и ориентирована в газовую фазу, полярная группа оказывает влияние на поверхностное натяжение. [c.434]


    Для того чтобы вещество могло выполнять функцию ингибитора травления, оно должно иметь в общем случае одну или несколько полярных групп, посредством которых молекула могла бы присоединяться к поверхности металла. Обычно они представляют собой органические соединения, содержащие азот, амины, серу или группу ОН. Важное значение для эффективности ингибитора имеют размер, ориентация, форма молекулы и распределение электрического заряда в ней. Например, обнаружено, что коррозия железа в 1т растворе соляной кислоты замедляется производными тиогликолевой кислоты и З-меркаптонронионовой кислоты в степени, которая закономерно зависит от длины цепи соединений [32]. Возможность адсорбции соединения на поверхности данного металла и относительная сила связи адсорбции часто зависят от такого фактора, как заряд поверхности металла [33]. Катодная поляризация в присутствии ингибиторов, которые лучше адсорбируются при потенциалах более от- [c.269]

    Необходимо отметить, что увеличение протонной поляризации за счет роста в процессе сорбции длины цепочек из сорбированных молекул и функциональных групп сорбента может иметь место в том случае, если образование таких цепочек повышает вероятность или расстояние перескока протона Н-мос-тика при включении электрического поля. При этом у сорбентов с частотной зависимостью ао особую роль в переносе протонов играют окружающие КВС молекулы и полярные функциональные группы. Ориентация их дипольных моментов, изменение положения отдельных ионов может существенно влиять на характеристики водородной связи и динамику движения протона Н-мостика [665]. [c.248]

    Смолы, содержащиеся в масляных фракциях нефти, неоднородны по структуре молекул. В их молекулах содержатся как нафтеновые, так и ароматические структуры, парафиновые цепи разных длины и степени разветвленности и атомы 5, О и N. При помощи фенола смолы можно разделить на растворимые и нерастворимые в нем [6]. В молекулах смол, не растворимых в феноле, содержатся длинные алкильные цепи, экранирующие циклические структуры и гетероатомы. Смолы, не растворимые в феноле, при совместной кристаллизации с парафиновыми углеводородами изменяют структуру кристаллов последних (рис. 40, а). Это объясняется ориентацией боковых цепей молекул смол и самой цепочки -парафина так, что полярные группы смол направлены наружу. В результате получаются крупные кристаллы неправильной формы. Поскольку полярность этих смол недостаточно велика, они не могут вызывать агломерацию кристаллов. В то же время, увеличение концентрации смол в растворе приводит к блокировке растущих центров кристаллов, затрудняя диффузию к ним молекул твердых углеводородов, что ведет к уменьшению размеров кристаллов. [c.134]


    Поверхностная активность и ориентация й поверхностном слое определяются структурой молекул контактирующих веществ. При этом полярные группы (—ОН, —СООН, —ЫНо, —5Н и др.) направлены в сторону более полярной фазы. [c.224]

    К горизонтальной ориентации способны и полярно-цепные молекулы, имеющие на обоих концах полярные группы. Таковы, например, двухосновные жирные кислоты. [c.66]

    В силу известного сродства к металлической поверхности полярные группы - прочно укрепляются на ней, способствуя этим ориентации всей молекулы в направлении, нормальном к поверхности. Направленные параллельно друг другу углеводородные цепи удерживаются в таком положении благодаря аддитивному действию вторичных валентностей. [c.148]

    Молекулы поверхностно-активных веществ, адсорбируясь на поверхности шариков эмульсии, ориентируются так, что полярные группы направлены в сторону полярной жидкости, а неполярные — в сторону неполярной. В результате такой ориентации на поверхности капли образуются двумерные пленочные кристаллоподобные структуры. Наличие структуры определяет механическую прочность пленок. В качестве примера прочных пленок можно привести мыльные пузыри. В отсутствие мыла (поверхностно-активного вещества) в воде пузыри не образуются, пленка воды мгновенно разрушается уже при очень малом размере пузыря. При наличии в воде мыла можно выдуть пузыри большой величины. При этом тонкая пленка воды со структурированными молекулами мыла выдерживает большие механические нагрузки. [c.451]

    Фуппы (-СОО -NHз и др.), а гидратация полярных заместителей - ориентацией молекул воды в результате образования водородных связей. Молекулы гидратно-связанной белком воды можно представить в виде монослоя вокруг ионизированных И полярных групп полипептида, в то время как гидрофобные ра- [c.359]

    Хемосорбционное закрепление полярных групп на твердой поверхности приводит к обратной ориентации молекул ПАВ, при которой углеводородный радикал обращается в водную фазу. Обусловленное этим возрастание поверхностной энергии с избытком компенсируется энергией возникающей химической связи. [c.7]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Такое же защитное действие на гидрофобные коллоиды оказывают поверхностно-активные вещества (ПАВ), но в этом случае большое значение имеет характер ориентации ПАВ в адсорбционном слое. Устойчивость коллоидных систем е водной среде более высокая, если полярные группы ПАВ адсорбционного слоя обращены в воду, так как только при этом увеличивается гидрофиль-ность поверхности. Установлено, что адсорбционные слои не всегда бывают сплошными. Во многих случаях стабилизация системы наступает при покрытии монослоем всего 40—60% поверхности коллоидных частиц, когда защитный слой имеет прерывный характер. Но максимальная устойчивость некоторых коллоидных систем зависит от образования полного мономолекулярного слоя (например, при добавлении желатина к золям золота или суспензиям кварца). [c.84]

    Механизм инверсии смачивания связан с определенной ориентацией молекул ПАВ в адсорбционном слое. Если твердая поверхность первоначально гидрофильна, то адсорбированные молекулы взаимодействуют своими полярными группами с поверхностью, а неполярными цепями обращаются наружу, вследствие чего твердая поверхность становится гидрофобной. Например, при погружении стеклянной пластинки в раствор стеариновой кислоты в октане или бензоле на поверхности пластинки образуется монослой стеариновой кислоты. Адсорбированные молекулы кислоты на пластинке ориентируются неполярными цепями наружу, придавая поверхности гидрофобные свойства. [c.315]


    Неустойчива также суспензия сажи в воде. Но и ее можно сделать устойчивой, добавляя к воде поверхностно-активное вещество. Ориентация молекул будет противоположная (рис. 52). т. е. неполярные углеводородные цепи свяжутся с неполярной поверхностью сажи, а полярные группы, ориентируясь наружу, создадут на поверхности частиц сажи гидрофильные оболочки, обеспечивающие смачивание водой и сольватацию частиц. [c.139]

    Прибавление поверхностно-активных вешеств к воде, в которой находится гидрофобная поверхность, приводит к тому, что на поверхности твердого тела образуется адсорбционный слой ориентированных дифильных молекул поверхностно-активных веществ, причем неполярная группа молекул (углеводородные радикалы) обращена к поверхности, а полярная группа (ОН, СООН, NH2) направлена в сторону полярной жидкости — воды. Такая ориентация молекул связана со стремлением системы уменьшить свободную поверхностную энергию (правило уравнивания полярностей Ребиндера). [c.138]

    Вещества (ПАВ и ВМС), создающие структурно-механический барьер, называются стабилизаторами. Адсорбционные слои структурируются вследствие ориентации молекул и боковой когезии (в результате притяжения диполей полярных групп соседних молекул, образования водородных связей или гидрофобного взаимодействия неполярных групп). Прочность полимерных слоев увеличивается во времени (в отличие от слоев ПАВ), достигая предельного значения лишь через несколько часов, что обусловлено замедленной диффузией макромолекул и медленной ориентацией их на границе раздела фаз. [c.260]

    В то же время органические жидкости с асимметричными молекулами (алифатические кислоты, спирты, амины, кетоны) при содержании в цепи более трех атомов углерода имеют одинаковое поверхностное натяжение, равное таковому для предельных углеводородов даже при большой разнице в длине цепи и значениях 11. В этом случае о перестает быть функцией полярности и кривая зависимости о —И идет параллельно оси абсцисс для гомологов с разной длиной цепи (рис. 19.3,2). Отсутствие влияния длины цепи на о является следствием ориентации молекул полярными группами в жидкость, неполярными — в газовую фазу. [c.306]

    Для изображения молекул ПАВ приняты условные обозначения. Прямая или волнистая линия обозначает углеводородный ря.д <ал, а кружок — полярную группу (рнс. 19.6). Благодаря дифильному строению ПАВ их молекулы самопроизвольно образуют ориентированный монослой на поверхности раздела фаз в соответствии с условием уменьшения энергии Гиббса системы полярные группы ( головы ) молекул располагаются в водной (полярной) фазе, а гидрофобные радикалы ( хвосты ) вытесняются из водной среды и переходят в менее полярную фазу, например в воздух (рис. 19.7). Причиной такой ориентации является то, что энергия взаимодействия молекул воды друг с другом больше, чем с гидрофобными частями молекул ПАВ нг0-Н20> [c.309]

    Тот факт, что поперечное сечение молекул ПАВ, находящихся в конденсированном монослое, не зависит от длины цепи, говорит о вертикальной ориентации молекул. Полярные группы молекул ПАВ погружены в воду, углеводородные цепи обращены в неполярную среду (воздух). Вычисление длины молекул ПАВ показало, что эта величина меняется пропорционально числу атомов углерода. [c.325]

    Точно так же во втором случае (неводный раствор) разность полярностей фаз уменьшается вследствие обратной ориентации молекул ПАВ (рис. 66,6), обращенных полярными группами к полярному адсорбенту (дипольное взаимодействие). Оба рисунка иллюстрируют молекулярный механизм адсорбции, отвечающий общей тенденции, выраженной вторым началом термодинамики. [c.175]

    Молекулы ароматических растворителей образуют динамические комплексы с молекулами растворенного вещества, особенно если они содержат полярные группы. В этих комплексах, несмотря на тепловое движение, молекулы имеют некоторую предпочтительную взаимную пространственную ориентацию. Если учесть анизотропию ароматического ядра, то следует ожидать, что влияние его на химические сдвиги отдельных протонов растворенного вещества будет различным, в зависимости от их пространственного расположения относительно ароматического ядра растворителя. Когда в молекуле отсутствуют полярные группы (например, в случае углеводо- родов), растворенное вещество не имеет предпочтительной ориентации молекул относительно ароматических ядер раство  [c.73]

    Процессы релаксации и определение энергии, а также энтропии активации определение полярных групп в неполярных полимерах, подвижности и ориентации сегментов цепи, влияния пластификатора [c.416]

    Основываясь на правиле, уравнивания полярностей, можно заранее сказать, что поверхностно-активное вещество должно адсорбироваться в поверхности раздела твердое тело — жидкость тем больще, чем больше будет оказываемое обеими фазами ориентирующее влияние на адсорбируемые молекулы. При этом избыток свободной поверхностной энергии будет меньше в том случае, когда молекулы своей полярной частью будут обращены к адсорбенту, если его поверхность гидрофильна (смачивается водой), а углеводородной частью — в сторону неполярного или малополярного растворителя. Для адсорбентов с гидрофобной (несмачиваемой водой) поверхностью ориентация полярных молекул должна происходить в обратном порядке, т. е. углеводородной частью в сторону адсорбента и полярной группой в сторону растворителя (например, воды). [c.290]

Фиг. 3. Ориентация полярных молекул в поверхностном слое на границе раздела смесь —олеиновая кислота последняя ориен- ° родной фаГ° ° 1 ируется в пов>ерхкостном слое раздела фаз таким образом, что полярная группа олеиновой кислоты (СООН) ориентируется в направленип воды, а неполярная— углеводородный радикал — в сторону неполярной углеводородной фазы. Фиг. 3. <a href="/info/563723">Ориентация полярных молекул</a> в <a href="/info/4507">поверхностном слое</a> на <a href="/info/68165">границе раздела</a> смесь —<a href="/info/1191">олеиновая кислота</a> последняя ориен- ° родной фаГ° ° 1 ируется в пов>ерхкостном <a href="/info/235179">слое раздела</a> фаз <a href="/info/461013">таким образом</a>, что <a href="/info/102651">полярная группа</a> <a href="/info/1191">олеиновой кислоты</a> (СООН) ориентируется в направленип воды, а неполярная— <a href="/info/7341">углеводородный радикал</a> — в сторону неполярной углеводородной фазы.
    Таким образом, анализ диэлектрических изотерм сорбции воды на гидрофильных материалах в области малых величин сорбции показывает, что наблюдаемые для различных материалов зависимости е = /(а) могут быть объяснены с помощью двух основных видов поляризации ориентационнон, обусловленной ориентацией сорбированных молекул и полярных групп сорбата, и протонной, связанной с изменением положения протона Н-мостика. При этом характер зависимости e = f(a) определяется изменением подвижности сорбированных молекул и протонов в процессе сорбции. [c.248]

    Такая ориентация ПАВ обусловлена как ван-дер-ваальсовыми силами притяжения между углеводородными цепями, так и сила ми взаимного отталкивания их полярных групп при высоких концентрациях присадки в системе. Пока мицеллы имеют небольшие размеры, они преимущественно концентрируются в фильтрате обезмасливаиия. При этом церезин обедняется присадкой, что ведет к возрастанию его р и а. Для фильтрата аналогичные показатели снижаются, особенно р , что говорит о высокой концентрации присадки в этом продукте. В этой области скорость фильтрования суспензий петролатумов снижается до уровня скорости фильтрования без присадки. При введении более 0,1% (масс.) присадки наряду со сферическими мицеллами образуются более крупные пластинчатые мицеллы ПАВ, и присадка обнаруживается как в твердой, так и в жидкой фазе. Возможно также взаимодействие части мицелл между собой с образованием крупных агрегатов, благодаря чему скорость фильтрования увеличивается, но уже не достигает максимума. Аналогичные результаты получены при использовании присадок АзНИИ и ПМА Д в качестве модификаторов структуры кристаллов твердых углеводородов. Следовательно, присадки этого типа обладают адсорбционным механизмом действия при кристаллизации твердых углеводородов в процессе обезмасливаиия. [c.181]

    Молекулы веществ, повышающих маслянистость, могут содержать не только полярные, но и неполярные группы. Так, углеводороды ряда СяНая или СпНгп+г могут образовывать на металлической поверхности слои ориентированных молекул, которые адсорбируются вследствие поляризации. Эффект ориентации неполярных длинноцепных молекул может быть достигнут введением в смазочную композицию ПАВ в весьма небольшой концентрации. Молекулы, оринтированные наиболее сильно, образуют слой толщиной около 20 нм, при нагревании толщина этого адсорбционного слоя уменьшается вследствие дезориентации молекул. Температура критического перехода, соответствующая предельной смазочной способности, связана с температурой десорбции ПАВ. При температурах ниже точки плавления металла молекулы группируются на его поверхности так, что полярная группа находится в контакте с металлом, а другие группы направлены наружу. Методом электронной дифракции можно установить, как изменяется поверхность металла при трении, — кристаллическая структура поверхностного слоя превращается в аморфную. [c.130]

    Как показали исследования И. Лангмюра [12] и В. Харкинса [13], молекулы в поверхностном слое ориентированы определенным образом относительно поверхности раздела. На основании большого экспериментального материала А. Н. Фрумкин [14] и П. А. Ребиндер [15] установили, что поверхностная активность и ориентация молекул в поверхностном слое определяется структурой последних. На поверхности раздела молекулы ориентируются таким образом, что полярные группы (—ОН, —СООН, —КНг, —ЗН и др.) направлены в сторону более полярной фазы (например, воды), неполярная часть (углеводородный радикал молекулы) — в сторону менее полярной. Связь поверхностной активности вещества со структурой молекул, с количеством и расположением полярных групп, зависимость ее от геометрических размеров лио-фобной части представляет определенные возможности для познания структуры вещества. Применение экспериментальных методов и основных положений теории поверхностных явлений к изучению молекулярно-поверхностных свойств полярных компонентов высокомолекулярной неуглеводородной части нефти в сочетании с химическими и физическими методами должны оказать существенное влияние на познание химической природы и коллоидных свойств смолисто-асфальтеновых веществ. [c.191]

    Агрегативная устойчивость эмульсий количественно характеризуется скоростью их расслоения, или временем жизни отдельных капель в контакте с другими. Чаще пользуются первой характеристикой. Ее определяют, измеряя высоту (объем) отслоившейся фазы через определенные промежутки времени. Без эмульгатора устойчивость эмульсий минимальна. Известны методы стабилизации эмульсий с помощью ПАВ, ВМС, порошков. Так же как и ири стабилизации лиозолей, стабилизация эмульсий с помощью ПАВ обеспечивается благодаря адсорбции и определенной ориентации молекул ПАВ, что вызывает снижение иоверхностного натяжения. Ориентирование ПАВ в эмульсиях следует правилу уравнивания полярностей Ребиндера полярные группы ПАВ обращены к полярной фазе, а неполярные радикалы — к неполярной фазе. В зависимости от типа ПАВ (ионогенные, неионогенные) капельки эмульсии приобретают соответствующий заряд или на их поверхности возникают адсорбционно-сольватные слои. Очевидно, что электрические и адсорбционно-сольватные слои должны быть образованы со стороны дисперсионной среды. [c.347]

    Конкретизируя картину образования монослоя на поверхности металла, А. С. Ахматов указывает, что положительные ионы и электроны, находящиеся на поверхности металлической решетки, действуют как центры электростатических сил. В таких микрополях противоположных знаков карбоксильные или иные полярные группы испытывают характерные деформации, приводящие к двум типам их конфигурации с позитивной и негативной ориентацией результирующего момента, как показано на рис. 30. При этом головные группы смежных молекул из числа фиксированных на поверхности металлической решетки, как обладающие противоположно направленными электрическими моментами, должны при-тягиватся друг к другу. Этр взаимодействие способствует упрочению первично-мономолекулярного слоя [6]. [c.147]

    Адсорбция. Различают два вида адсорбции дифильных молекул. На границах раздела вода — неполярная фаза (вода — воздух, вода — углеводород) адсорбция имеет, по определению П. А. Ребиндера, пассивный характер, так как происходит путем , выталкивания углеводородных радикалов нз водной фазы вследствие интенсивного взаимного притяжения полярных молекул воды. Носителем поверхностной активности при адсорбции из воды на границе с неполярной фазой служит углеводородный радикал. Уменьщение энергии Гиббса в этом процессе достигается такой ориентацией молекул ПАВ в адсорбционном слое, при которой гидрофобная часть молекулы в большей или меньшей степени переходит в неполярную ф аз у, полярная группа остается в воде (йр я м а я ориентаЙ . Такая адсорбция является неспецифической, для нее характерно подчинение правилу Дюкло — Траубе. [c.6]

    Введение в состав звеньев макромолекул различных функциональных или полярных групп вызывает поляризацию этих звеньев и придает им свойства диполя. Величины дипольного момента каждого звена макромолекулы зависят от степени поляризации, вызванной присутствием полярных групп, от количества полярных групп и их взаимного сочетания. В тех случаях, когда межмолекулярные расстояния сравнимы с расстояниями между зарядами, между молекулами, имеющими структуру диполей, возникают дополнительные связи, вызванные притяжением противо-. положиых полюсов соседних молекул, т. е. дипольные силы межмолекулярного притяжения. Взаимной ориентации молекулярных диполей противодействует тепловое движение молекул, поэтому величина дипольных сил в значительной степени зависит от температуры. Макромолекулы, состоящие из полярных звеньев, представляют собой совокупность диполей, создаваемых каждым звеном. Взаимодействие таких макромолекул в полимере вызывает взаимную ориентацию звеньев соседних цепей и притяжение их друг к другу. Чем больше дипольные моменты отдельных [c.28]

    Именпо различной ориентацией молекул битума — парафиновые цепи ианравлены в сторону газовой фазы нри затвердении на воздухе, а полярные группы направлены в сторону водной фазы при затвердении битума в воде — объясняет Сааль образование матовой поверхности битума в первом с.лучае и блестя)цей во втором. [c.387]

    Выше было показано, что частички сажи и кокса в зависимости от содержания полярных групп в связующем способны к экранированию микросфер мезофа.зы каменноугольного пека, содержащего в своем составе функциональные группы, или превращаться в зародыши ее образования (только в нефтяных пеках). Структура граничных слоев в зависимости от вида связующего, как следствие этого обстоятельства, резко отличается. С увеличением длины молекул связующего их ориентация относительно поверхности частичек улучшается. Вязкость граничных слоев, вследствие этого, в несколько раз выше объемной вязкости, что находится в хорошем соответствии с данными о вязкости мезофазного и изотропного пеков. [c.152]

    Солюбилизация олеофильных веществ, содержащих полярные группы (дл нноцепочечные спирты, амины), происходит путем внедрения их молекул в поверхностный слой мицелл (см. рис. 18,6). Внедрившиеся молекулы располагаются между молекулами ПАВ, ориентируясь параллельно им и обращаясь полярными группами в водную фазу. Такая ориентация обусловлена дифильным характером этих веществ. Энергия связи полярной группы с водой препятствует полному погружению молекул солюбилизата в 1Дро мицеллы. При этом в зависимости от природы солюбилизата различают два типа его локализации а) глубокое проникновение в наружный слой мицелл (в молекулах солюбилизата преобладают олеофильные свойства) б) слабое проникновение в наружный слой (вещества гидрофильного характера). В предельном случае, при заметном преобладании гидрофильных свойств, реализуется третий тип локализации солюбилизат адсорбируется на поверхности мицеллы (см. рис. 18,е), как это найдено, например, для случая солюбилизации диметилфталата и бензойной кислоты в растворах оксиэтилированных жирных спиртов. [c.71]

    Строение двойного электрического слоя у частиц с постоянным дипольным моментом. Н. А. Толстой с сотр. показали, что существуют коллоидные частицы с электрической дипольной структурой, образующиеся вследствие самопроизвольной униполярной ориентации адсорбированных на их поверхности диполей дисперсионной среды (например, Н2О, 0Н и т. д.) или вследствие ориентации полярных групп самого вещества частиц. Подобные частицы, как показали различные электрооптические методы исследования, обладают жестким большим электрическим моментом (тысячи и миллионы дебаев). Так, перманентная ди-польня я структура обнаружена у пятиокиси ванадия, у частиц суспензий глйны, гуминовых золей, суспензий ряда красителей и некоторых бактерий и вирусов. Можно с достаточной уверенностью сказать, что подобные дипольные структуры, привлекшие в последнее время особое внимание исследователей, широко распространены в коллоидных и биологических системах. [c.190]

    Электрокапиллярные кривые в присутствии различных концентраций органического вещества (К-С4Н9ОН) показаны на рис. УП.Ю. При адсорбции н-бутилового спирта иа ртутном электроде снижается пограничное натяжение и смещается потенциал электрокапиллярного максимума. При достаточно боль-пгих положительных и отрицательных зарядах поверхности о, -кривые в присутствии и в отсутствие органического вещества совпадают, что указывает на его десорбцию. Причина десорбции состоит в том, что заряженный конденсатор — двойной электрический слой — втягивает вещество с более высокой диэлектрической постоянной. Поскольку еН20>еорг. то при больших <7 вода вытесняет органическое вещество из поверхностного слоя, несмотря на его специфическую адсорбцию. В приведенном примере сдвиг ,=0 происходит в положительную сторону. Это вызвано полярностью молекул н-С Н ОН и их ориентацией к поверхности ртути положительным (гидрофобным) концом диполя, в то время как гидрофильная часть молекулы (полярная группа —ОН), несущая отрицательный заряд, обращена в раствор. [c.176]

    Рассмотрим влияние природы и различных сочетаний замещающих групп в орто-, мета- и лара-замещенных бензолах. На рис. 16.6 представлены хроматограммы о-, м- и л-метилнитробен-золов, метилфенолов, а также о- и л-грег-бутилфенолов и 2,6-ди-грег-бутилфенола. Во всех этих случаях сближение неполярного заместителя с полярным в орго-положении приводит к ослаблению удерживания. Наиболее сильно удерживаются молекулы, в которых такие заместители расположены в мара-положении, так как у молекул таких изомеров полярная группа может ориентироваться наиболее выгодным образом относительно силанольных групп поверхности кремнезема. Такой ориентации молекулы помогает расположение углеводородного заместителя в пара-иоло-жении, т. е. в направлении объема элюента. Мега-изомеры удерживаются сильнее орто-, но слабее пара-изомеров, так что по временам удерживания эти изомеры располагаются в порядке о-См-Сп-. При этом внутримолекулярная водородная связь между замещающими группами не образуется. [c.294]

    Существование этой предельной величины качественно легко объяснимо. Действительно, тонкий поверхностный слой при высоких концентрациях ПАВ в растворе должен насыщаться молекулами ПАВ. Однако факт постоянства Гоо для всех членов ряда, на первый взгляд, удивителен, так как он означает, что на 1 см площади поверхностного слоя в пределе помещается одно и то же количество адсорбированных молекул, независимо от их длины. На основании этого факта, установленного экспериментально, а также других данных по поверхностным слоям, и в частности, основываясь на исследованиях русских ученых Шишковского и Гурвича, Лэнгмюр (1915 г.) выдвинул представление об ориентации адсорбированных молекул в поверхностном слое. Он исходил из того, что молекулы ПАВ состоят из двух частей — полярной (например, —СООН, —СН2ОН, —ЫНзОН) и неполярного радикала, обладающего весьма слабым молекулярно-силовым полем. Схематически такую дифильную молекулу (рис. 22) обычно изображают в виде кружка (полярная группа) и черточки (неполярный радикал). [c.86]

    Макромолекулы белков и других полимеров развертываются в адсорбционном слое (как и в нерастворимых пленках, см. раздел VIH. 4) таким образом, что гидрофильные части обращены к водной фазе, образуя в ней свободные петли и складки сегментов цепей. Прочность таких белковых слоев на границе воды с углеводородом (эмульсии), как показали работы Измайловой , на 2—3 порядка выше, чем на грайице с воздухом (нерастворимые пленки). Это может быть объяснено более полной развертываемостью макромолекул и образованием большого числа мак-ромолекулярных связей. Еще большей прочностью обладают смешанные пленки, образующиеся при введении маслорастворимых ПАВ в адсорбционный слой желатины (Измайлова). Ориентация молекул ПАВ полярными группами в сторону желатины создает дополнительные контакты. Эти пленки представляют большой интерес как модели биологических мембран. [c.260]

    Жидкое состояние углеводородных цепей отличается, однако, от состояния объемной жидкой фазы, характерного, например, для капли эмульсии. Благодаря ориентации полярных групп, вся мицелла находится в жидкокристаллическом состоянии, подобном конденсированным пленкам (см. раздел VIII. 3). [c.333]


Смотреть страницы где упоминается термин Полярные группы, ориентаци: [c.387]    [c.110]    [c.154]    [c.204]    [c.230]    [c.293]    [c.294]    [c.175]   
Коллоидная химия (1959) -- [ c.85 , c.86 ]

Коллоидная химия (1959) -- [ c.85 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Полярность группы



© 2025 chem21.info Реклама на сайте