Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бислои

Рис. 46. Схема установки для исследования электрохимических свойств липидных бислоев (а) и структура липидного бислоя (б) / — тефлоновый стакан 2 — отверстие, на кото-ром формируется липидная мембрана 3 — электроды 4 — углеводородное бислойное ядро 5 полярные группы фосфолипидных молекул Рис. 46. <a href="/info/13990">Схема установки</a> для <a href="/info/1681426">исследования электрохимических свойств</a> <a href="/info/179541">липидных бислоев</a> (а) и <a href="/info/1401735">структура липидного</a> бислоя (б) / — тефлоновый стакан 2 — отверстие, на кото-ром формируется <a href="/info/265814">липидная мембрана</a> 3 — электроды 4 — углеводородное бислойное ядро 5 <a href="/info/102651">полярные группы</a> фосфолипидных молекул

    Эксперименты показали, что на больших расстояниях (когда толщина водной прослойки превышает 3 нм) взаимодействие фосфолипидных бислоев описывается теорией Дерягина — Ландау— Фервея—Овербека [416, 417]. На меньших расстояниях наблюдается сильное отклонение от предсказаний теории ДЛФО [c.147]

    Флуоресцентные зонды и метки являются удобным инструментом для исследования биологических мембран и мембранных ферментов. Испо 1ьзование зондов разной природы, способных связываться с белками или встраиваться в различные области липидного бислоя, а также меток, ковалентно реагирующих с функциональными группами белков или липидов, позволяет получить ценную информацию о состоянии и подвижности белка в мембране, состоянии липидного матрикса, характере белок-белковых и белок-липидных взаимодействий. [c.365]

    Для объяснения структурных особенностей тонких прослоек воды, ограниченных монослоями диполей, привлекается нелокальная электростатика (раздел 9). Этот подход учитывает не-локальность действия на среду электрического поля, а именно влияние на состояние диэлектрика напряженности электрического поля не только в данной точке, но и в ее окрестности. Этот эффект оказывается особенно значительным в случае воды в тонких прослойках, вызывая появление в них сил отталкивания гидрофильных поверхностей (структурные силы). Их действием удается количественно объяснить устойчивость тонких слоев воды между бислоями липидов, являющихся физической моделью биологических мембран. [c.117]

Рис. 9.4. Зависимость силы взаимодействия бислоев липидов (Р) от расстояния (Л) между ними Рис. 9.4. <a href="/info/3588">Зависимость силы</a> взаимодействия бислоев липидов (Р) от расстояния (Л) между ними
    Систему двух фосфолипидных бислоев, находящихся в водном электролите, в общем случае можно представить следующим образом (рис. 9.5) В точках 2 = 0 и г = к находятся границы раздела липид/электролит, в точках г = Ь и г = к—Ь находятся плоскости, равномерно покрытые электрическими зарядами с поверхностной плотностью а и электрическими диполями с поверхностной плотностью нормальной составляющей р,. В полупространствах 2<0 и г>Ь находится диэлектрик (электрическое поле в котором отсутствует) в слое 0<г<к находится водный электролит с дебаевской длиной экранирования Распределение электрического потенциала в электролите определяется уравнением  [c.163]


    Поверхность фосфолипидных бислоев обладает особенностью (отличающей ее от обычных коллоидных структур), которая в значительной степени осложняет теоретический анализ межфазных явлений в системе. Эта особенность связана с тем, что об-пасть полярных головок проницаема для молекул воды и ионов электролита [423, 424]. В этой области перемешаны как источники электрических полей, принадлежащих самой поверхности, так и заряды ионов и электрические диполи молекул воды. В таких системах трудно выделить четкую границу раздела между фосфолипидной фазой и электролитом. Поверхностные источники электрических полей, по существу, распределены в некотором приповерхностном слое. Термин поверхностные в данном случае означает, что они, обладая некоторой мобильностью в этом слое, сохраняют химическую связь с определенными группами липидной поверхности. Учет этой особенности дает воз- [c.149]

    Другой аспект анализа структуры ДЭС вблизи фосфолипидных бислоев связан с проблемой адекватного описания электролита. В последние годы было показано (обзор см. в [428]), что водный электролит обладает свойством нелокальной поляризуемости, влияние которой наиболее значительно в системах, содержащих в качестве источников электрических полей поверхностные диполи [429]. В этой связи возникает вопрос а влиянии нелокальной поляризуемости водного электролита на структуру ДЭС вблизи фосфолипидной поверхности. [c.150]

    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    Поверхность реального фосфолипидного бислоя представляет собой довольно сложное образование. Граничащие с электролитом полярные головки фосфолипидных молекул образуют поверхностный слой (толщиной 0,6—1 нм), заполненный электрическими зарядами и диполями. Часть -этих зарядов и диполей принадлежит самим головкам, другую часть составляют молекулы воды и ионы электролита. Поэтому термины поверхностные заряды , поверхностные диполи в значительной степени условны. Заряды и диполи реальных фосфолипидных поверхностей распределены в приповерхностном слое. Происхождение такого распределения является результатом рыхлости поверхности, позволяющей молекулам воды и ионам электролита проникать в глубь поверхности. [c.150]

Рис. 9.3. Модель поверхности фосфолипидного бислоя. Рис. 9.3. <a href="/info/25640">Модель поверхности</a> фосфолипидного бислоя.
    Выражение (9.43) позволяет высказать предположения о возможном механизме преодоления сил структурного отталкивания в биологических системах в процессе слияния мембран. Известно, что слияние мембран происходит лишь в том случае, когда в растворе, омывающем мембраны, в достаточном количестве присутствуют ионы Са + [430]. Одна из особенностей взаимодействия этих ионов с фосфолипидными бислоями заключается в том, что ионы Са + могут легко связываться с полярными головками фосфолипидных молекул и способны соединять две такие молекулы, образуя между ними кальциевые мостики [430]. Следовательно, адсорбция ионов Са + на поверхности бислоя приводит к стабилизации, цементированию его структуры. Другая особенность связана с тем, что ионы Са +, проникая в область полярных головок бислоя, вытесняют оттуда молекулы воды, т. е. дегидратируют поверхности бислоя [460]. [c.167]

    Структурная составляющая расклинивающего давления фосфолипидных бислоев [c.161]

    Интерес к особым свойствам граничных слоев воды имеет давнюю историю [444]. Результаты многочисленных исследований свидетельствуют о том, что свойства этих слоев существенно отличаются от свойств объемной воды [42, 43, 415, 421, 422]. Наиболее простое описание этих различий можно выполнить с помощью представления о связанной воде [1, 64, 445]. Для фосфолипидных бислоев это означает, что одна молекула, например, лецитина связывает 20 молекул воды, из которых 2—3 связаны сильно , а остальные представляют собой промежуточный тип слабо связанной воды [446]. Очевидно, что в рамках такого упрощенного описания довольно трудно выяснить физико-химическую природу воздействия поверхности на структуру граничных слоев воды или электролита. В работах Б. В. Дерягина [42, 43, 415] сделан переход к более детальному описанию граничных слоев было высказано предположение о существовании специфического взаимодействия, существенно отличающегося от классических (электростатического и вандер-ваальсового) и возникающего в процессе сближения частиц или поверхностей в зоне перекрытия граничных слоев. [c.161]


Рис. 9.5. К расчету сил структурного отталкивания бислоев липидов Рис. 9.5. К расчету сил структурного отталкивания бислоев липидов
    НЫХ сил отталкивания, действующих на малых расстояниях (<4 нм) между фосфолипидными бислоями. Эти силы столь велики, что для удержания двух бислоев на расстоянии 0,7 нм нужно приложить внешнее давление в 10 Па. Исследования показали, что эти силы обладают следующими необычными свойствами [418—420]. [c.162]

    Строение клеточной мембраны показано на рис. 1.13. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны ад- [c.158]

    Разброс данных соответствует различным фосфолипидам. Заметим, что даже для наиболее сильно заряженных липидных бислоев обычное значение электростатического отталкивания на два порядка меньше Ро. [c.162]

    Предложенная теория позволяет объяснить некоторые необычные свойства структурных сил, в частности, их. уменьшение при переходе липидного бислоя из жидкой фазы в твердую [419], несмотря на то, что при этом возрастает поверхностная плотность диполей. В процессе такого фазового перехода вода вытесняется из области полярных головок, что означает снижение степени гидратации, описываемой параметром L, и, следовательно, фактора 7, входящего в Ро [см. (9.42) ]. Аналогичным образом можно объяснить также снижение гидратационных сил у тех фосфолипидов, у которых площадь на одну молекулу So меньше [458]. [c.166]

    Возможно, при этом существенны также эффекты, связанные с флуктуацией поверхности бислоя [457]. [c.166]

    Используя эти данные, можно предположить следующую картину преодоления гидратационного барьера. В отсутствие ионов a + поверхности сближающихся бислоев являются довольно рыхлыми и нелокальная электростатика находящегося между ними электролита соответствует диэлектрическому приближению (9.19). Как следует из (9.26), в этом случае между бислоями действуют значительные силы отталкивания. Добавление в электролит ионов Са + приводит к двум эффектам. Во-первых, благодаря образованию кальциевых мостиков структура бислоя приобретает жесткость и теперь более адекватной становится модель зеркального отражения , т. е. взаимодействие бислоев теперь описывается выражением (9.43). Во-вторых, ионы Са2+ дегидратируют поверхности сближающихся бислоев, что, как видно из (9.43), приводит к полному исчезновению гидратационных сил.  [c.167]

    В работе [461] было предложено альтернативное объяснение механизма преодоления гидратационного барьера, связанное с тем, что значительные неравновесные флуктуации формы бислоев могут привести к снижению гидратационных сил. [c.167]

    Мембранные ферменты отличаются от растворимых ферментов одним важным свойством все они прочно связаны с липидным бислоем соответствующих мембран. Поэтому помимо субстратов, активаторов или ингибиторов их регуляторами являются сами мембранные липиды. Белок-липидные взаимодействия играют важную роль в регуляции активности мембранных ферментов, причем действие многих биологически активных соединений реализуется через изменение структурного состояния липидного бислоя. [c.358]

Рис. VI. 15. Схема установки для исследования электрохимических свойств липидных бислоев (а) и структура липидного бислоя (б) Рис. VI. 15. <a href="/info/13990">Схема установки</a> для <a href="/info/1681426">исследования электрохимических свойств</a> <a href="/info/179541">липидных бислоев</a> (а) и <a href="/info/1401735">структура липидного</a> бислоя (б)
    В отличие от соединений ПАВ с одной углеводородной цепью, соединения с двумя цепями в области ККМ образуют везикулы в форме бислоя дифильных молекул (плоского или сферического) с углеводородными цепями внутри слоя и полярными головками снаружи, обращенными к воде. [c.322]

    Следует сказать несколько слов о биологическом значении мицеллообразования. Биологические мембраны — сложные бислои с гидрофобным ядром и гидрофильным окружением. Действительно, биологическая активность и специфичность многих биохимических процессов требует соответствующей структурной организации. Агрегация обеспечивает один из уровней организации молекул, причем эта агрегация обратима. [c.327]

    Лебедев A.B. Исследование механизмов переноса заряда через липидные бислои импедансным методом. Канд. диссертация. М., Ин-т электрохимии АН СССР, 1975. [c.89]

    Черри и Чэпмен [103] предположили, что аномально низкая величина показателя преломления лецитин-декановых пленок, получаемая из измерений угла Брюстера в соответствии с однослойной изотропной оптической моделью пленки, объясняется их оптической анизотропией. Действительно, стержневидные молекулы ПАВ (липида) обычно ориентированы перпендикулярно поверхности бислоя, что неизбежно должно приводить к анизотропии оптических свойств черной пленки. Поэтому более правильно представлять черную пленку в виде пластинки из одноосного кристалла, оптическая ось которой нормальна к ее поверхности. [c.113]

    Естественно, что молекулам растворителя легко проникать в области бислоев, характеризующиеся большей подвижностью. [c.121]

    Как показали исследования на липосомах и ориентированных мультислоях с помощью спин-меченых препаратов [142], участок углеводородной цепи лецитина от полярной группы до Gg имеет структуру жесткого стержня , у более дальних участков углеводородной цени повышается вероятность изгибов и соответственно увеличивается подвижность ее концов. Вероятно, такой градиент подвижности цепей имеет место и в черной пленке. Тогда распре-деление плотности молекул растворителя в ней должно быть таким, что они сосредоточатся в основном в центре бислоя. [c.122]

    Исследования ориентации и упаковки молекул ПАВ и растворителя в черной пленке весьма важны для выяснения причин устойчивости черных пленок, для понимания механизма транспорта ионов через них, взаимодействия бислоев с белками и т. д. Пока в этом направлении сделаны только первые шаги. [c.122]

    Пирен — гидрофобный флуоресцентный зонд, способный встраиваться в неполярные области между жирнокислотными цепями фосфо липидов бислоя мембран. При этом в спектре флуоресценции пирена, встроенного в мембрану, обнаруживаются 3 пика (в области 370— 390 нм), характерные для мономерной формы пирена, и один пик (в области 460—470 нм), характерный для эксимера пирена — димера, состоящего из одной возбужденной и одной невозбужденной молекулы зонда. Максимум возбуждения пирена — 330—335 нм. Величина пика флуоресценции эксимера характеризует способность молекул зонда [c.366]

    Физико-химические характеристики биологических мембран, основу которых составляют фосфолипидные бислои, определяют механизмы протекания многих важных биологических процессов. В последнее десятилетие усилия многих лабораторий были направлены на исследование этих характеристик с помощью различных модельных систем, среди которых мультиламелляр-ная фосфолипидная дисперсия является одной из самых популярных. Эта система, самопроизвольно образующаяся при определенной концентрации фосфолипидных молекул в воде, представляет собой стопку плоских параллельных бислоев, разделенных тонкой прослойкой воды или водного электролита. Как известно, свойства воды в таких тонких слоях существенно отличаются от свойств объемной воды [415]. Если в водной фазе фосфолипидных дисперсий присутствуют растворенные ионы, то около каждой липидной поверхности образуется двойной электрический слой (ДЭС). [c.147]

    Для физиков проблема структурных сил привлекательна тем, что эти силы являются, по-видимому, наиболее яркой демонстрацией пространственной дисперсии диэлектрического отклика в водном электролите. Д. Грюен и С. Марчелья [450] впервые показали, что гидратационные силы в фосфолипидных системах могут быть представлены как результат влияния пространственной неоднородности электрических полей на взаимодействие сближающихся фосфолипидных бислоев. В работах [451, 452] непосредственно использовали аппарат нелокальной электростатики для описания природы гидратационных сил. Отметим, что были предложены и другие теории гидратационных сил [453, 454]. Однако подход, основанный на нелокальной электростатике, представляется физически более достоверным, поскольку он позволяет представить эти силы как результат электростатического взаимодействия сближающихся фосфолипидных бислоев. Это, в свою очередь, позволяет независимо исследовать влияние электролита и параметров поверхности на величину гидратационных сил. Опишем кратко развитый нами подход, следуя [438]. [c.163]

    Обобщенная двухступенчатая модель релаксации анизотроп-но-упорядоченной воды успешно использована для интерпретации релаксационных данных на ядрах и О в растворах полимеров и биополимеров [39, 605]. В [603] релаксационные данные на ядрах Н, Ш и Ю анизотропно-упорядоченной воды в упорядоченных бислоях лиотропного жидкого кристалла интерпретируются с помощью другой теории, основанной на модели аксиального анизотропного вращения. Данная теория, первоначальный вариант которой был предложен Д. Восснером [606], позволяет объяснить наличие второго минимума на кривой зависимости Ti x ) для протонов (см. рис. 14.2). Однако, как отмечено в [591], попытка использовать только этот механизм для интерпретации данных по протонной релаксации наталкивается на серьезные затруднения. [c.237]

    Системы с пониженной размерностью. Обычные теории межмолекулярного вклада в протонную магнитную релаксацию, предложенные для трехмерных систем, не применимы для систем с пониженной размерностью, например для одномерных (Ш) или двумерных (2D) систем. Вместе с тем при исследовании структуры воды в гидрофильных объектах системы такого типа встречаются довольно часто например, вода, адсорбированная на плоской подложке, вода между плоскими пластинками слоистых силикатов или вода в плоских бислоях лиотропных жидких кристаллов — все это характерные примеры 2D-систем. Обзор теорий магнитной релаксации для систем с пониженной размерностью дан в работе [607]. Интересной особенностью неограниченных систем с пониженной размерностью является то, что для них функция спектральной плотности при малых частотах расходится и I (со- 0)->оо. Для ограниченных систем (когда величина d на рис. 14.1 конечна) расходимости при малых частотах нет, но для таких систем на кривой зависимости T i(t ) наблюдаются два минимума, соответствующие условиям (uqT 1 и (ooTiat l, где -Tiat ii /(4D, ). Детальное обсуждение экспериментальных результатов по ЯМР релаксации в ограниченных двумерных системах приведено в работе [608]. [c.237]

    ЕлКин А. II., Берестовский Г. H., Гюлъханданян М. 3. Исследование влияния концентрации одно- и двухвалентных катионов на расстояние между двумя липидными бислоями в зоне контакта.— Докл. АН СССР , [c.87]

    Единственная попытка построения микроскопической теории диэлектрической проницаемости и показателя преломления липидных бислоев принадлежит Оуки [98], который представил пленку как однородный слой строго упорядоченных метильных групп. Расчет показал, что такая модель характеризуется значительной анизотропией диэлектрической проницаемости и показателя преломления, хотя порядок этих величин был тем же, что и при макроскопическом подходе. Однако представление черной пленки в виде кристаллоподобного тела не совсем корректно, поэтому вопрос о построении микроскопической теории с учетом ее реальной структуры остается открытым. [c.109]

    Увеличение молекулярной массы при переходе от липопептидов к липопро-теинам сказывается на определенных физико-химических характеристиках (растворимость, вязкость и др.) и более существенно — на их биологической функциональности. Так, установлено, что липопротеины входят в структуру клеточных мембран, либо локализуясь на поверхности липидного бислоя, либо внедряясь в него, согласно "жидко-мозаичной модели , тогда как более низкомолекулярные липопептиды [c.129]

    По химическим и физико-химическим свойствам воски близки к жирам, отличаясь от последних большей инертностью, особенной устойчивостью к гидролизу — они могут быть гид-ролизованы с трудом и только в щелочной среде. Для них также нехарактерно окисление по типу прогорка-ния". Гидрофобность восков также более ярко выражена по сравнению с глицеридами, фосфолипидами и другими жироподобными соединениями — они вообще не образуют поверхностно-активных пленок и макроструктур, подобных липидным бислоям. [c.131]

    Л б - основа мол организации мембран биологических Легко формируется липидами, у к-рых невелики различия между площадью поперечного сечения головки и углеводородных цепей. Это свойственно большинству фосфолипидов биол мембран Характерный признак лнпндов, образующих Л б,-низкая величйна критич концентрации мицеллообразования (ок 10 М) Толщина Л б определяется прежде всего длиной углеводородных цепей и обычно находится в пределах 4-5 нм Присутствие в цепях 1/ с-двойных связей, боковых метильных групп и др заместителей нарушает плотность упаковки молекул и приводит к уменьшению толщины бислоя [c.597]


Библиография для Бислои: [c.278]   
Смотреть страницы где упоминается термин Бислои: [c.149]    [c.166]    [c.318]    [c.352]    [c.353]    [c.71]    [c.292]   
Смотреть главы в:

Биоорганическая химия -> Бислои


Биофизическая химия Т.1 (1984) -- [ c.202 , c.218 , c.221 , c.230 ]




ПОИСК







© 2025 chem21.info Реклама на сайте