Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тейхоевые кислоты

    Тейхоевые кислоты клеточной стенки в стенках бактерий достаточно прочно соединены с другим высокомолекулярным ингредиентом стенки — мукопептидом (см. стр. 582), причем эти биополимеры связаны ковалентной связью и образуют один сшитый поперечными сшивками высокополимерный блок, который обеспечивает механическую прочность стенки грамположительных микроорганизмов . [c.586]

    Углеводные цепи П. построены из регулярно чередующихся остатков Ы-ацетил-О-глюкозамина и его 3-0-(Л)-1-кар-боксиэтилового эфира (мурамовой к-ты), соединенных р-1-+4-СВЯЗЯМИ. Мурамовая к-та связана пептидной связью с тетра- или пентапептидами, к-рые образуют поперечные сшивки между отдельными углеводными цепями (см. схему). Гигантские сетчатые молекулы П. образуют жесткий чехол вокруг бактериальной клетки, к-рый поддерживает ее форму и защищает клетку от разрушения при мех. и осмотич. воздействиях. К П. ковалентными связями присоединяются др. компоненты клеточной стешп-тейхоевые кислоты и тейхуроновые к-ты, липопротеины. [c.468]


    Тейхоевые кислоты связаны с пептидогликановым слоем и клеточной стенкой грамположительных бактерий, причем у некоторых штаммов на их долю приходится до 50% сухого веса клеточных стенок [ПО, 111]. Тейхоевые кислоты представляют собой высокомолекулярные полимеры, структура которых в общем виде выглядит следующим образом. [c.394]

    ЗОЙ, 307 4/1102. См. также Нуклеиновые кислоты, Тейхоевые кислоты [c.739]

    ТЕЙХОЕВЫЕ кислоты (от греч. 1ё1сЬоз-стена), углеводные фосфатсодержащие полимеры бактериального происхождения. [c.509]

    Другие тейхоевые кислоты ковалентно связаны с гликолипидами (например, с олигосахаридом, присоединенным гликозидной связью к диглицериду), входящими в состав плазматической мембраны [111]. [c.395]

    Таким образом, основными компонентами клеточной стенки грамположительных эубактерий являются три типа макромолекул пептидогликаны, тейхоевые кислоты и полисахариды, которые с помощью ковалентных связей образуют сложную структуру с весьма упорядоченной пространственной организацией. [c.32]

    Универсальным компонентом клеточной стенки бактерий является так называемый мукопептид клеточной стенки. В клеточной стенке грам-положительных бактерий присутствуют также тейхоевые кислоты. Структура этих сложных биополимеров, содержащих остатки моносахаридов и аминокислот, будет обсуждена в гл. 21. В некоторых случаях из клеточной стенки грамположительных бактерий выделены и другие полисахариды. Так, в состав клеточной стенки Ba illus subtilis входит тейхуроновая кислота , построенная из остатков N-ацетилгалактозамина и глюкуро- [c.554]

    Тейхоевые кислоты являются одним из двух высокомолекулярных веществ, составляющих основу клеточных стенок грамположительных бактерий, где они соединены со вторым, биополимером — мукопептидом клеточной стенки. Тейхоевые кислоты — особый тип биополимера. Они содержат кроме углеводов и аланина многоатомные спирты — рибит или глицерин и остатки фосфорной кислоты. Тейхоевые кислоты выделяют из клеточной стенки, где их содержание составляет 20—50%, экстракцией 5%-ной водной трихлоруксусной кислотой . Полученные этим методом образцы тейхоевых кислот имеют молекулярный вес 4000— 5000 показано, что в этих условиях выделяется уже деградированный биополимер. Если предварительно выделенные стенки бактерий подвергнуть обработке ферментом, разрывающим связь тейхоевых кислот с другим ингредиентом стенки — мукопептидом, то с помощью электрофореза можно выделить тейхоевую кислоту с молекулярным весом около 2 ООО ООО,, которая, вероятно, является нативным биополимером. Из данных кислотного, ш,елочного и ферментативного гидролиза следует, что тейхоевые кислоты содержат остатки фосфорной кислоты, аланина, многоатомных спиртов — рибита или глицерина и одного из моносахаридов — глюко- [c.584]


    Значит, роль в живой природе ифают прир. Ф. п.- нуклеиновые кислоты и тейхоевые кислоты. [c.157]

    Эти необычные полимеры, содержащие остатки фосфорной кислоты, составляют до 50 % сухой массы клеточных стенок некоторых грамположительных бактерий. Они являются также мембранными и внутриклеточными компонентами бактерий. Тейхоевые кислоты прочно закреплены в клеточной стенке, и для их экстракции необходим такой реагент, как трнхлоруксусная кислота. Их распространению, строению и свойствам посвящен обзор [136]. Известны тейхоевые кислоты двух типов, один из которых содержит цепи из остатков D-глицерина, связанных фосфодиэфирными связями второй тип вместо D-глицерина содержит D-рибит. Рибит-тейхоевые кислоты содержат углеводные остатки, присоединенные гликозидной связью в глицеринтейхоевых кислотах углеводные остатки имеются лишь в некоторых случаях. [c.251]

    Детальная классификация соединений этого типа еще невозможна из-за недостатка наших знаний сб их структуре. К ним относятся гликопротеины — биополимеры с пептидными и полисахаридными цепями гликолипиды — биополимеры, имеющие наряду с полисахаридными или олигосахаридными цепями остатки липидного типа гликолипопротеины — биополимеры, содержащие фрагменты пептидного, углеводного и липидного характера тейхоевые кислоты, полимерная цепь которых построена из остатков полиолов, соединенных фосфодиэфирными связями, а в боковые цепи входят остатки аминокислот и моносахаридов. Количественное соотношение фрагментов того или иного типа в смешанных биополимерах варьирует в очень широких пределах. Известны, например, гликопротеины, содержащие лишь небольшое количество углеводов (1—5%) и стоящие, таким образом, близко к белкам наряду с этим в таких гликопротеинах, как групповые вещества крови, содержится около 80/о углеводов. [c.565]

    Тейлора-Мак-Киллопа реакция 1/160 Тейта уравнение 1/1215, 1217 Тейхоевые кислоты 4/1010, 1011  [c.718]

    Содержание липидов в клеточной стенке дрожжей составляет от 1 до 10% общего количества биомассы. Фракцию липидов образуют жирные кислоты, фосфолипиды, стеролы. Обычно липидные молекулы ориентированы перпендикулярно по отношению к поверхности клетки и образуют гидрофобные микроканалы, которые, возможно, играют важную роль в транспорте водонерастворимых веществ, например в проникновении парафина в клетку. Существует мнение, что компоненты клеточной стенки влияют на окраску препаратов микроорганизмов по Граму. В зависимости от того, окрашивается после этой обработки соответствующая культура или нет, все микроорганизмы делят на грамположительные (окрашиваются) или грамотрицательные (не окрашиваются). Очень важными компонентами клеточной стенки, влияющими на проницаемость, являются тейхоевые кислоты— полимеры, образуемые рибофосфатами либо глицерофосфатами. [c.15]

    Кроме того, в настоящее время доказано, что такой сшитый полимер в клеточной стенке бактерии соединен ковалентными связями со вторым компонентом стенок — тейхоевой кислотой. Считают, что эта связь является фосфодиэфирной и включает концевую фосфатную группу тейхоевой кислоты и один из моносахаридных остатков главной цепи мукопеп-тида 1 1. [c.584]

    В клеточных стенках тейхоевые кислоты ковалентно связаны фосфодиэфирными связями с остатками мурамовой кислоты пеп-тидогл,икана. Было предложено два возможных типа их расположения [412]. Согласно одному из них, цепи пептидогликана расположены перпендикулярно по отношению к внешним концам тейхоевых кислот. В соответствии с этой моделью клеточная стенка состоит из слоя пептидогликана толщиной 10 нм, снаружи от которого находится слой тейхоевых кислот толщиной 12 нм. Согласно другому предположению, цепи пептидогликана ориентированы параллельно поверхности бактериальной клетки. При равномерном распределении связей тейхоевой кислоты с пептидогликаном она оказывается тесно связанной с последним на всем протяжении стенки. [c.395]

    Характерная особенность биосинтеза липидов заслуживает того, чтобы прокомментировать ее здесь. Холин и этаноламин активируются аналогично тому, как это имеет место в случае сахаров [уравнение (11-26). Например, холин может быть фосфорилирован с использованием АТР [уравнение (11-26), стадия а], а образующийся фосфорилхолин может далее превращаться в цитидиндифосфатхолин [уравнение (11-26), стадия б]. В результате переноса фосфорилхолина из последнего соединения на подходящий акцептор образуется конечный продукт [уравнение (11-26), стадия в]. Следует отметить отличие этих реакций полимеризации от синтеза полисахаридов, которое состоит в том, что вступление в реакцию сахаронуклеотида сопровождается отщеплением целого нуклеозиддифосфата, тогда как в реакциях DP-холина и DP-этанолами-на отщепляется СМР, а одна фосфатная группа остается в конечном продукте. То же самое имеет место в случае синтеза бактериальных тейхоевых кислот (гл. 5, разд. Г, 2). Сначала образуется DP-глицерин или DP-рибит, а после этого происходит полимеризация с отщеплением СМР и образованием чередующегося сахарофосфат-алкогольного полимера [28а]. [c.494]

    Все упомянутые полиолы в настоящее время получены синтетически, а ч асть из них найдена в природе. Так, рибит (адонит) встречается в некоторых растениях и входит в состав важного кофермента флавинаденин-нуклеотида (рибофлавина), а также одного из важнейших биополимеров — тейхоевой кислоты (см. стр. 584) D-сорбит и L-идит обнаружены в соке ягод рябины, D-маннит выделен из ряда водорослей и т. д. [c.79]


    Mi ro o us lysodeikti us не содержит тейхоевой кислоты из нее выделен полисахарид, в состав которого входят эквимолекулярные количества глюкозы и 2-ацетамидо-2-дезоксиманнуроновой кислоты .  [c.555]

    В тейхоевых кислотах доказано наличие сложноэфирной связи (тип А) аланина с остатками рибита. В защитном антигене стафилококка обнаружена амидная связь остатков аланина через аминогруппу глюкозамина . Высказано предположение о наличии в гликопротеинах 0-ацилгликозид-ной связи, однако твердые доказательства существования такого типа связи еще отсутст вуют. Очевидно, в сложных по структуре гликопротеинах углеводные и пептидные части могут быть связаны и несколькими разными типами связей, о чем свидетельствует неполное расщепление всех гликопептидных связей под действием какого-либо одного реагента и образование смеси низкомолекулярных гликопептидов, содержащих связи разного типа при неспецифической деструкции исходного гликопротеина. [c.573]

    Цифры в кружках обозначают I, 2 — места полимеризации гликанового остова молекулы 3 — место присоединения с помощью фосфодиэфирной связи молекулы тейхоевой кислоты в клеточной стенке грамположительных эубактерий 4, 5 — места, по которым происходит связывание между гликановыми цепями с помощью пептидных связей 6 — место ковалентного связывания (пептидная связь) с липопротеином наружной мембраны у грамотрицательных эубактерий  [c.30]

    Кроме пептидогликана в состав клеточных стенок фамположительных эубактерий входит другой уникальный класс химических соединений — тейхоевые кислоты, представляющие собой полимеры, построенные на основе рибита (пятиатомного спирта) или глицерина (трехатомного спирта), остатки которых соединены между собой фосфодиэфирными связями (рис. 8). Некоторые [c.31]

    Разнообразные функции выполняют макромолекулы, локализованные частично или полностью на внешней стороне клеточной стенки, контактирующей с окружающей средой это специфические рецепторы для фагов и колицинов антигены (липополисахарид грамотрицательных эубактерий, тейхоевые кислоты фамположительных) макромолекулы, обеспечивающие межклеточные взаимодействия при конъюгации, а также между патогенными бактериями и тканями высших организмов. [c.37]


Смотреть страницы где упоминается термин Тейхоевые кислоты: [c.140]    [c.23]    [c.131]    [c.737]    [c.191]    [c.394]    [c.8]    [c.251]    [c.251]    [c.252]    [c.253]    [c.255]    [c.551]    [c.583]    [c.584]    [c.584]    [c.585]    [c.585]    [c.586]    [c.604]    [c.29]    [c.32]   
Смотреть главы в:

Биохимия ТОМ 1 -> Тейхоевые кислоты

Химия углеводов -> Тейхоевые кислоты

Химия и биохимия углеводов -> Тейхоевые кислоты


Биохимия Том 3 (1980) -- [ c.394 , c.395 ]

Общая органическая химия Т.11 (1986) -- [ c.251 ]

Химия углеводов (1967) -- [ c.551 , c.555 , c.565 ]

Микробиология Издание 4 (2003) -- [ c.31 ]

Биоорганическая химия (1987) -- [ c.494 , c.510 , c.512 ]

Теоретические основы биотехнологии (2003) -- [ c.14 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.560 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.265 ]

Энциклопедия полимеров том 1 (1972) -- [ c.265 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.265 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.265 ]

Общая микробиология (1987) -- [ c.53 , c.54 , c.85 ]

Химия и биохимия углеводов (1978) -- [ c.170 ]

Химия нуклеозидов и нуклеотидов (1966) -- [ c.211 , c.215 ]

Микробиология (2006) -- [ c.39 ]

Химия биологически активных природных соединений (1976) -- [ c.85 ]

Углеводы успехи в изучении строения и метаболизма (1968) -- [ c.232 ]

Микробиология Изд.2 (1985) -- [ c.28 ]

Генетическая инженерия (2004) -- [ c.234 ]




ПОИСК







© 2025 chem21.info Реклама на сайте