Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Биополимеры смешанные

    Некоторые сложные эфиры карбоновых кислот и углеводов распространены в природе. Так, например, известны частично ацетилированные сахара, входящие в состав антибиотиков, сердечных гликозидов достаточно широко распространены частично ацетилированные полисахариды. Особое место занимают эфиры сахаров с аминокислотами, так как именно-они в ряде случаев осуществляют связь белковой и углеводной компонент в смешанных биополимерах. В последнее время из различных микроорганизмов выделены сахара, ацилированные высшими жирными кислотами. Широко распространены в природе также эфиры ароматических, карбоновых кислот, в частности таннины, которые представляют собок эфиры глюкозы и галловой, дигалловой и полигалловой кислот. Таннины-применяются в промышленности как дубильные вещества. [c.133]


    УГЛЕВОДСОДЕРЖАЩИЕ СМЕШАННЫЕ БИОПОЛИМЕРЫ [c.565]

    Получен целый ряд новых полимеров полимеров с сопряженной системой связей и комплексных полимеров, обладающих высокой термостойкостью, полупроводниковыми и другими ценными свойствами. Но наиболее разительные успехи за последние годы достигнуты в области биологически активных полимеров, так называемых биополимеров, к которым относятся белки, нуклеиновые кислоты, многие полисахариды и смешанные полимеры, содержащие, например, белковую и углеводную или углеводную и липидную компоненты. [c.8]

    ЛИПОПОЛИСАХАРИДЫ, смешанные биополимеры, включающие полисахаридную часть и ковалентно связанный с ней липидный остаток Л характерны для микроорганизмов Наиб подробно изучены Л грамотрицат бактерий и, прежде всего, знте- [c.602]

    Особенно широко распространены углеводсодержащие смешанные биополимеры, несущие важные биологические функции (см. гл. 22). [c.565]

    Для оценки биологических функций биополимера необходимо иметь четкое представление о том, в каких биологических структурах находится данный биополимер и какие его свойства необходимы для успешного функционирования этих структур необходимо также связать свойства биополимера с химической структурой. Поэтому вначале кратко будет рассмотрено современное состояние вопроса о цитохимической и гистохимической локализации углеводсодержащих биополимеров и вопроса о связи структуры и биологической функции полисахаридов. В пределах этой главы мы не будем проводить четкого различия между полисахаридами и углеводсодержащими биополимерами смешанного типа, поскольку биологические функции последних чаще всего связаны именно с присутствием в составе молекулы углеводных остатков. С другой стороны полисахариды обычно встречаются в клеточных структурах в виде комплексов различной степени прочности с другими природными биополимерами. [c.598]

    Показано, что в организме человека и животных, в микроорганизмах, а также в растительном мире имеется большое количество смешанных биополимеров, и рассмотрены те ответственные функции, которые они несут. [c.8]

    Задача установления строения смешанных биополимеров гораздо сложнее. Она включает установление строения полисахаридных цепей как одну из подчиненных задач. А в целом надо еще узнать природу и структуру неуглеводной части молекулы, способ присоединения одной части к другой и места присоединения. Так, для установления полкой структуры рассмотренных выше группоспецифических гликопротеинов необходимо узнать структуру полисахаридных цепей, способ, с помощью которого они связаны с полипептидной цепью, структуру узлов связи, Структуру полипептидной цепи и, наконец, места присоединения в этой цепи. Это весьма значительная по объему работа. Не случайно после двух десятилетий интенсивных усилий нескольких крупных лабораторий мира полная структура этих биополимеров все еще не установлена (хотя ее основные черты и многие детали уже известны). [c.49]


    Биополимеры живой клетки — белки, полисахариды, нуклеиновые кислоты и липиды образуют субклеточные структуры, соединяясь между собой более или менее прочными связями. Это могут быть ионные или водородные связи, которые легко диссоциируют, причем биологический комплекс распадается на свои компоненты. С другой стороны, белки, полисахариды, нуклеиновые кислоты, липиды могут соединяться между собою ковалентными связями в этом случае они называются смешанными биополимерами. [c.565]

    Ограничимся разбором путей установления структуры полисахаридов, хотя они далеко не исчерпывают структурные задачи, возникающие в химии углеводов. Для этого есть две причины. Во-первых, полисахариды (включая сюда смешанные биополимеры) представляют собой наиболее важный объект углеводной химии. Во-вторых, установление строения полисахаридов включает основные типы структурных задач, в том числе установление строения моно- и олигосахаридов, а применяемые для этой цели методы являются наиболее общими и употребительными инструментами химии сахаров в целом. [c.50]

    Сам по себе природный объект, например полисахарид или смешанный углеводсодержащий биополимер, часто бывает столь сложным, что непосредственно понять его свойства и функцию на молекулярном уровне современной науке оказывается не под силу. И тут неоценимую помощь оказывают упрощенные модели такого полимера, включающие определенные элементы его структуры. Такую роль, например, играют олигосахариды по отношению к полисахариду или полисахаридные цепи гликопротеина по отношению к природному гликопротеину. Источником подобных упрощенных систем может служить, с одной стороны, сад[ исходный биополимер, а с другой — их химический синтез. [c.116]

    В монографию включены главы, касающиеся биохимии моно- и полисахаридов, а также глава о смешанных биополимерах, в состав которых входят олиго- и полисахариды. Эти главы изложены химическим языком с использованием современной биохимической терминологии, что делает их особенно ценными для биохимиков, желающих познакомиться с химией углеводов. [c.2]

    Весьма ответственным этапом исследования углеводсодержащих смешанных, биополимеров является выбор подходящего метода их выделения. Поскольку связь между различными фрагментами этих веществ может быть очень лабильной, для их выделения применяются самые мягкие методы. [c.565]

    Биологическое значение и применение. П. выполняют в организмах весьма важные функции. По биоло-гич. функции П. делят на структурные (напр., целлюлоза, хитин), запасные, или энергетические (крахмал, гликоген, эремураи), и физиологически активные (гепарин, П. веществ группы крови). Многие П. обладают высокой биологич. активностью, напр, гепарин — сильный антикоагулянт крови, влияет на лишздный обмен гиалуроновая к-та участвует в минеральном обмене и регулирует проницаемость тканей. Большинство П. обладает иммунными свойствами. Особенно большое значение имеют П., к-рые входят в состав биополимеров смешанных, напр. П. веществ группы крови. [c.20]

    Структуры смешанных биополимеров чрезвычайно сложны, а их подробное изучение в сущности лишь только начинается. В отличие от полисахаридов систематически описать и классифицировать типы структур смешанных биополимеров весьма затруднительно прежде всего из-за ограниченного количества надежно и полно расшифрованных структур. Укажем лишь, что связь олиго-или полисахаридной компоненты с пептидной, белковой или липидной осуществляется обычно при помощи гликозидной связи либо по гидроксильным группам (например, в остатках оксиаминокислот пептидной цепи), либо по амидной группе амидов двухосновных аминокислот. Возможна также фосфодиэфирная связь, подобная той, которая лежит в основе строения нуклеиновых кислот. [c.44]

    Гл. 21. УГЛЕВОДСОДЕРЖАЩИЕ СМЕШАННЫЕ БИОПОЛИМЕРЫ [c.566]

    Для получения в индивидуальном состоянии смешанных биополимеров наиболее эффективными методами разделения являются хроматография (ионообменная хроматография и гель-фильтрация для гликопротеинов, адсорбционная хроматография для гликолипидов) и электрофорез во многих случаях успешно применяются методы фракционированного осаждения. [c.566]

    Исследование структуры углеводсодержащих смешанных биополимеров начато по-настоящему только в последние годы. Сейчас эта область химии углеводов развивается стремительными темпами. [c.566]

    Объекты изучения белки и пептиды, нуклеиновые кислоты, углеводы, липиды, биополимеры смешанного типа — гликопротеины, нуклеопротеины, липопротеииы. гликолипиды и т. п. алкалоиды, терпеиоиды, витамины, антибиотики, гормоны, проста-гландины, ростовые вещества, феромоны, токсины, а также синтетические лекарственные препараты, пестициды и др. [c.11]

    БИОПОЛИМЕРЫ (biopolymers, Biopolymere, bio-polymeres) — приро (ные высокомолекулярные соединения, из к-рых построены клетки живых организмов, и межклеточное вещество, связывающее их между собой. К числу Б. относятся белки, нуклеиновые кислоты, полисахариды и так называемые биополимеры смешанные. Б. обеспечивают нормальную жизнедеятельность организмов, выполняя различные биологические функции. [c.128]


    К природным Ф. а. п. относятся белки, нуклеиновые кислоты, полисахариды, липопротеиды и др. высокомолекулярные продукты жизнедеятельности животных и растительных организмов (см. Биополимеры, Биополимеры смешанные). Физиологич. активность проявляют практически все пр10)одные высокомолекулярные соединения, когда они, будучи выделены из животных или растительных тканей одного организма, вводятся в др. организм. Примеры природных Ф. а. п. гамма-глобу-лин, гепарин, инсулин, протамины, нуклеазы, интер- фероны и др. [c.368]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Между этими крайностями имеются всевозможные системы, содержащие больше или меньше белковой компоненты и больше или меньше полисахаридной. Такие соединения называют гликопротеинами, а также протеогли-канами (гликаны — общее название полисахаридов). Точного определения у этих терминов нет, и те или иные классы биополимеров называют либо гликопротеинами, либо протеогликанами, руководствуясь при этом скорее традицией, чем какими-либо четкими критериями. Аналогично обстоит дело с ковалентно связанными углеводами и липидами их называют гликолипидами, а также линонолисахаридами. Весь же тип природных высокомолекулярных соединений, включающих ковалентно связанные фрагменты полимеров более чем одного класса, называют смешанными биополимерами, а в последнее время — гликоконъюгатами. [c.44]

    БИОПОЛИМЕРЫ (от греч bios-жизнь и polymeres-состоящий из многих частей, многообразный), прир высокомол соединения, являющиеся структурной основой всех живых организмов Обеспечивают их нормальную жизнедеятельность, выполняя разнообразные биол. функции К Б относятся белки, нуклеиновые кислоты, полисахариды Известны также смешанные Б, напр липопротеины (комплексы, содержащие белки и липиды), гликопротеины (соед, в молекулах к-рых олиго- или полисахаридные цепи ковалентно связаны с пептидными цепями), липополисахариды (соед., молекулы к-рых построены из липидов, олиго-и полисахаридов) [c.289]

    К прир. N-Г. относятся нуклеозиды, нуклеотиды, нуклеиновые к-ты, гликопротеины, нек-рые смешанные биополимеры, в к-рых гликозидная связь соединяет углеводные и пептидные цепи через амидный атом N остатка аспарагина. Многие N-Г. и структурные аналоги нуклеозидов, являясь антиметаболитами нуклеозидов, обнаруживают высокую физиол. активность и используются в кач-ве лек. препаратов, напр, фторафур, цитарабин. [c.577]

    Детальная классификация соединений этого типа еще невозможна из-за недостатка наших знаний сб их структуре. К ним относятся гликопротеины — биополимеры с пептидными и полисахаридными цепями гликолипиды — биополимеры, имеющие наряду с полисахаридными или олигосахаридными цепями остатки липидного типа гликолипопротеины — биополимеры, содержащие фрагменты пептидного, углеводного и липидного характера тейхоевые кислоты, полимерная цепь которых построена из остатков полиолов, соединенных фосфодиэфирными связями, а в боковые цепи входят остатки аминокислот и моносахаридов. Количественное соотношение фрагментов того или иного типа в смешанных биополимерах варьирует в очень широких пределах. Известны, например, гликопротеины, содержащие лишь небольшое количество углеводов (1—5%) и стоящие, таким образом, близко к белкам наряду с этим в таких гликопротеинах, как групповые вещества крови, содержится около 80/о углеводов. [c.565]

    В этой книге мы не будем рассматривать ни большинство смешанных соединений указанных выше типов, ни аналитическую химию следовых количеств полимерных соединений, поскольку для этих целей применяются в высшей мере специфические методы разделения и обнаружения. К таким соединениям помимо промышленных синтетических полимеров относятся биополимеры, например ДНК, РНК, белки и т. д. Последние играют важнейшую роль в биохимии, но для их определения на уровне следовых количеств применяются специфические биохимические методы, и поэтому они также не рассматриваются в настоящей монографии. Аналогично только вкратце будут упомянуты предшественники биополимеров — аминокислоты, нук-леозиды и т. п. [c.15]

    Углеводы (рибоза, дезоксирибоза) используются для синтеза нуклеиновых кислот, они являются составными компонентами нуклеотидных коферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание к себе привлекают смешанные биополимеры, содержащие углеводы гликопептиды и гликопротеины, гликолипиды и липополисахариды, гликолипопротеины и т.д. Эти вещества выполняют в организме сложные и важные функции. [c.169]

    Среди всех других классов углеводов именно полисахариды привле кают сейчас наиболее пристальное внимание биохимиков и других спе циал истов, связанных с проблемами биологии. Это объясняется тем, чт( структура полисахаридных цепей во многих случаях определяет биоло гическую специфичность, как, например, в случае полисахаридов микро организмов. По этой причине химия полисахаридов тесно связана с хими ей смешанных биополимеров, имеющих в своем составе полисахаридны [c.9]

    Химия кетоз представляет собой значительно более сложную и менее изученную область химии моносахаридов, чем химия альдоз. Кетозы в меньшей степени распространены в природе, чем альдозы, а их природные представители менее разнообразны. Из всех кетоз наибольшее значение имеет Л-фруктоза, играюш,ая наряду с глюкозой первостепенную роль в энергетическом обмене углеводов (см. гл. 13). Л-Фрукто-за входит в состав ряда растительных полисахаридов, а также и олигосахаридов, в том числе в состав важнейшего из них — сахарозы. В ограниченном числе природных объектов обнаружены также -сорбоза Д-тагатоза Л-псикоза и Ь-трео-пентулоза . Представитель высших кетоз — седогептулоза и фосфаты пентулоз играют центральную роль в процессе фотосинтеза (см. гл. 13). В полисахаридах бактериальных стенок обнаружены 2-кето-З-дезоксиальдоновые кислоты. К 2-кето-З-дезоксиальдоновым кислотам относятся и сиаловые кислоты — важнейшая группа моносахаридов, входящих в состав смешанных углеводсодержащих биополимеров (см. гл. 12 и 21). Эта глава посвящена общей характеристике химического поведения и методов получения кетоз, главным образом на примере простейших представителэй кетогексоз и кето-пентоз. [c.239]

    Распространение в природе. Аминосахара широко распространены в природе и играют исключительно важную роль в процессах жизнедеятельности. Они являются необходимыми структурными единицами муко-полисахаридов (см. гл. 20) и смешанных биополимеров (см. гл. 21). Наиболее часто встречается в природе Л-глюкозамин. Полимер глюкозамина хитин образует наружный скелет всех ракообразных и насекомых кроме того, глюкозамин входит в состав гиалуроновой кислоты, кератосульфата, групповых веществ крови, ганглиозидов и т. д. Наряду с Л-глюкозамином в состав различных мукополисахаридов входят также Л-галактозамин и значительно реже Л-талозамин полимер Л-галактозамина составляет основу хрящевой ткани. [c.269]

    Кроме 2-амино-2-дезоксигексоз, входящих в состав мукополисахаридов и смешанных биополимеров, за последние годы в различных антибиотиках был обнаружен целый класс необычных аминосахаров . В этих аминосахарах аминогруппа может находиться в любом положении углеродной цепи моносахарида наряду с аминогруппой в них могут содержаться и другие функциональные группы. Так, например, широко распространены диаминосахара и дезоксиаминосахара. К аминосахарам, выделенным из антибиотиков и содержащим кроме альдегидной и гидроксильных групп только аминогруппу, относятся 2-амино-2-дезокси-О-гулоза (группа стрептотрициновых антибиотиков), 2-метиламино-2-дез-окси- -глюкоза (стрептомицин), З-амино-З-дезокси-Л-рибоза (пуромицин), [c.269]

    Полисахариды могут состоять из одного или нескольких типов моносахаридов, и в зависимости от этого различают гомо- и гетерополисахариды. По-видимому, даже самые сложные полисахариды редко содержат больше пяти — шести различных моносахаридов. К самым распространенным из них относятся гексозы — глюкоза, галактоза, манноза, пентозы — арабиноза, ксилоза. Кетозы в полисахаридах встречаются значительно реже альдоз. Широко распространены 6-дезоксигексозы — рамноза, фукоза, 2-аминосахара — глюкозамин, галактозамин, а также уроновые кислоты и нейраминовая кислота. Кроме того, многие полисахариды содержат заместители неуглеводной природы — остатки серной или фосфорной кислот, органических кислот, обычно уксусной. Смешанные биополимеры кроме углеводной части содержат белковую или липидную компоненты. [c.477]

    Строго говоря, к углеводсодержащим смешанным биополимерам относятся и нуклеиновые кислоты, в основе которых лежит полирибозофосфатная цепь. Однако вследствие их исключительной биологической роли и особенностей химического поведения нуклеиновые кислоты выделены в особый класс и не будут рассматриваться в этой книге. [c.565]

    Биополимеры, содержащие одновременно пептидные и полисахаридные цепи, уже достаточно давно найдены в животных организмах. Позднее они были обнаружены также в микроорганизмах и растениях и в настоящее время составляют наиболее обширный и изученный класс смешанных биополимеров. Существует известная неопределенность в номенклатуре этих соединений, которые часто называются углевод-белковыми соединениями или комплексами они известны и под наименованиями мукополисахаридов (для веществ, содержащих большое количество углеводов), мукопротеинов (для веществ, содержащих больше белковых фрагментов), мукоидов и т. п. В последнее время их чаще всего называют гликопротеинами, независимо от соотношения в них пептидной и полисахаридной части, и мы принимаем здесь зто наиболее целесообразное название. Гликопротеины выделены из многих секреторных жидкостей, таких, как плазма крови, цереброспинальная жидкость, моча, синовиальная жидкость, слюна, желудочный сок и т. п. Они имеются в эритроцитах, нервной ткани и т. д. Очень многие белки содержат определенное количество углеводов , присоединенных в виде олиго- или полисахаридных цепей, и в сущности являются гликопротеинами сюда относятся овальбумин и овомукоид — главные компоненты белка куриного яйца, Y-глобулин и другие белки крови, многие ферменты, такие как, например, рибонуклеаза В, така-амилаза, глюкозооксидаза из Aspergillus niger, некоторые гормоны, в частности гормоны гипофиза (тиреотропин, фолликулостимулирующий гормон), и др. Важнейшая функция гликопротеинов связана, по-видимому, с обеспечением всех видов клеточных взаимодействий, таких, как скрепление клеток в тканях, иммунохимическое взаимодействие, оплодотворение и т. п. (см. гл. 22). [c.566]


Смотреть страницы где упоминается термин Биополимеры смешанные: [c.132]    [c.132]    [c.129]    [c.129]    [c.20]    [c.305]    [c.31]    [c.43]    [c.149]    [c.174]    [c.140]    [c.205]   
Энциклопедия полимеров том 1 (1972) -- [ c.262 , c.264 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.262 , c.264 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.262 , c.264 ]




ПОИСК





Смотрите так же термины и статьи:

Биополимеры



© 2024 chem21.info Реклама на сайте