Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характерные особенности биосинтеза

    Характерные особенности биосинтеза [c.491]

    Характерной особенностью роста популяции микроорганизмов является зависимость удельной скорости роста клеток от концентрации субстрата или продукта биосинтеза. Графики на рис. 2.9 иллюстрируют щироко используемые при анализе кинетических закономерностей зависимости. Основной вид зависимостей (рис. 2.9, а, б, й) аналогичен 5-образной кривой с насыщением, однако повышение концентрации питательного субстрата может вызывать и ингибирующий эффект (рис. 2.9,г). Практически важна ситуация, когда продукты метаболизма при определенной их концентрации в среде ингибируют рост клеток (рис. 2.9, д, е, ж). Совместное влияние субстрата и продуктов метаболизма иллюстрирует зависимость на рис. 2.9, з. Достаточно общий случай взаимодействия субстрата и продукта метаболизма, влияющего на удельную скорость роста, отражает модель Моно—Иерусалимского [c.61]


    По сравнению с 3-окислением биосинтез жирных кислот имеет ряд характерных особенностей синтез жирных кислот в основном осуществляется в цитозоле клетки, а окисление-в митохондриях участие в процессе биосинтеза жирных кислот малонил-КоА, который образуется путем свя- [c.386]

    Антитела, или иммуноглобулины (Ig), — это группа белков, синтезируемых в организме в ответ на попадание в его внутреннюю среду частиц чужеродного вещества. Иммуноглобулины имеют характерные особенности строения, функций и биосинтеза. В совокупности работу иммунной системы человека обеспечивают около 10 ° молекул иммуноглобулинов. [c.485]

    Характерной особенностью структуры изопреноидов, определяющей их как четко очерченный класс природных соединений, является то, что их молекулы могут быть построены из двух или более остатков изопрена, связанных тем или иным образом в зависимости от пути их биосинтеза, с последующими, довольно прихотливыми модификациями первоначально образующегося ациклического скелета. [c.101]

    Биосинтез флавоноидных соединений — характерная особенность высших растений. Изотопные исследования показали, что [c.112]

    Учитывая малую изученность вопросов, связанных с биосинтезом пектиновых веществ, мы [12] провели некоторые исследования на растении кормового арбуза. Плоды арбуза представляют удобный объект исследования, так как в них при сравнительно высокой концентрации пектина содержится незначительное количество органических кислот, сахаров и отсутствует крахмал. Характерной особенностью плодов является высокое содержание воды (95— 96%) при очень крупных размерах плода (7—12 кг). [c.256]

    Разнородные производства на основе микробиологической технологии носят многостадийный характер и включают наряду с микробиологической стадией большое число других процессов, характерных для химической технологии. Объектом научного исследования данной книги является собственно микробиологическая стадия — стадия ферментации (культивирования, брожения, биосинтеза, биотрансформации, биоконверсии и т. п.). Назовем ее некоторые особенности. [c.8]

    Особняком стоят некоторые сельскохозяйственные растения, характерная особенность которых — способность к биосинтезу и накоплению значительных количеств алкалоидов. [c.36]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]


    Очень велика и специфична роль всей службы микробиологического контроля, в том числе и отделения чистой культуры, в современном биотехнологическом производстве в связи с характерной особенностью микробиологического синтеза, которая заключается в наличии постоянной обоюдной связи и зависимости между культурой-продуцентом и необходимой для нее питательной средой. При первоначальном отборе штамма, от которого зависит решение той или иной задачи биосинтеза, главное внимание исследователи обращают, конечно, на его продуктивность, т. е. способность быстро и эффективно вести биосинтез заданного продукта. При отборе лучшего из ряда найденных продуцентов учитываются их особенности, которые могут отразиться на технологии и экономике производства устойчивость к фаголизису и изменениям условий внешней среды — температуре, pH, аэрации и т. д. При прочих равных условиях предпочтение, естественно, отдается тому продуценту, который способен развиваться и давать продукт на недефицитных питательных средах, не требующих использования редких, дорогостоящих или технологически неудобных субстратов, в том числе и пищевых продуктов. [c.17]

    Белки-гормоны. Характерной особенностью этой группы белков является способность воздействовать на фундаментальные механизмы регуляции обмена веществ проницаемость клеточных мембран и биосинтез вторичных посредников. [c.83]

    Переходя в кристаллическое состояние, вещество освобождается от некоторой части своей энергии. Кристаллическое состояние характерно для неживой природы. В аморфное же состояние вещество переходит, аккумулируя энергию. Аморфное, точнее непериодическое строение вещества более характерно для живой природы. Известно, что в организмах с полной воспроизводимостью синтезируются сложнейшие вещества непериодического, но регулярного строения. Механизм биосинтеза в главных чертах известен. Его важнейшая особенность — принудительная, а не самопроизвольная, как в обычных процессах отвердевания, укладка структурных единиц с затратой, а не выделением энергии в окружающую среду. Энергия, необходимая для перемещения и укладки структурных единиц, т. е. для понижения энтропии системы, доставляется химическими реакциями. Заметим, что первичным ее источником является солнце. [c.161]

    Ферменты, локализованные на мембране эндоплазматической сети, 1<ата-лизируют большое число чрезвычайно важных биосинтетических реакций, К ним относятся, в частности, ключевые реакции биосинтеза стероидов, фосфолипидов и сложных полисахаридов. Особенно характерны для этой клеточной фракции реакции гидроксилирования многих органических мо.ле-кул (различные алифатические и ароматические амины, стероиды и т. д.). [c.253]

    Можно отметить, что в совершенно различных типах клеток наборы ферментов имеют много общего. По-видимому в них протекают в основном близкие (или даже и одинаковые) обменные процессы. Однако имеются и характерные отличия как в структуре, так и в химическом составе их, характере обмена биологических тканей, отдельных организмов. Все они обусловлены особенностями протекающих ферментативных процессов, соответствующим набором содержащихся ферментов, в особенности ферментов биосинтеза. [c.41]

    Изучение особенностей образования и накопления флавоноидов у ряда растений (кровохлебка, горец, володушка и др.) в течение вегетационного периода позволило установить, что эти особенности носят закономерный характер, тесно связанный с фазами развития организма. Установлена общая тенденция в накоплении фенольных соединений в растениях для изученных видов характерно максимальное накопление их в период перехода растений к репродукционным процессам. В фазу бутонизации отмечается вспышка синтеза фенольных соединений, причем у отдельных видов это содержание может возрастать в 1,5—2 раза по сравнению с начальными этапами развития растения (см. рисунок). Вероятно, эти тенденции находятся в прямой связи с общим повышением интенсивности обмена растительного организма как известно, именно в период перехода к репродукционным процессам возрастает интенсивность фотосинтеза дыхания, минерального питания, процессов передвижения веществ. В этой связи выяснилась возможность научно обоснованного подхода в решении спорных вопросов о рациональных сроках заготовки растительного сырья, от чего в немалой степени зависит его качество. Кроме того, рассмотрение количественных изменений родственных соединений в одном и том же организме в течение некоторого периода может привести к предположению о возможных ступенях биосинтеза веществ, а также их функций. [c.7]

    Основной орган биосинтеза растения — лист. Он является полу-функциональным органом. В нем осуществляются многочислен-ные и разнообразные метаболические процессы, связанные с формообразовательными процессами роста и развития растения. Характерная физиолого-биохимическая особенность ли- [c.392]


    Характерная особенность биосинтеза липидов заслуживает того, чтобы прокомментировать ее здесь. Холин и этаноламин активируются аналогично тому, как это имеет место в случае сахаров [уравнение (11-26). Например, холин может быть фосфорилирован с использованием АТР [уравнение (11-26), стадия а], а образующийся фосфорилхолин может далее превращаться в цитидиндифосфатхолин [уравнение (11-26), стадия б]. В результате переноса фосфорилхолина из последнего соединения на подходящий акцептор образуется конечный продукт [уравнение (11-26), стадия в]. Следует отметить отличие этих реакций полимеризации от синтеза полисахаридов, которое состоит в том, что вступление в реакцию сахаронуклеотида сопровождается отщеплением целого нуклеозиддифосфата, тогда как в реакциях DP-холина и DP-этанолами-на отщепляется СМР, а одна фосфатная группа остается в конечном продукте. То же самое имеет место в случае синтеза бактериальных тейхоевых кислот (гл. 5, разд. Г, 2). Сначала образуется DP-глицерин или DP-рибит, а после этого происходит полимеризация с отщеплением СМР и образованием чередующегося сахарофосфат-алкогольного полимера [28а]. [c.494]

    Ц.- кодируемая заменимая а-аминокислота. Ц. входит в состав белков и нек-рых пептидов (напр., глутатиона). Особенно много Ц. в кератинах. Биосинтез Ц. в растениях и микроорганизмах осуществляется тутем замены ОН на 8Н в серине. В организме животных образуется из метионина, распадается до цистамина. Характерная особенность Д.- его способность подвергаться в составе молекулы белка самопроизвольному окислению с образованием остатков цистина. Ц. участвует в биосинтезе цистина, глутатиона, таурина и кофермента А. [c.388]

    Органическое вещество в сапропеле малой степени разложения составляет больше половины сухой массы — до 68%, а в минерализованном — 35—40%. Содержание белковых веществ составляет 10—18% в пересчете на сухое вещество, жиров 0,3— 0,5%, клетчатки 1—6%, целлюлозы 10—50%. Характерной особенностью химического состава органической массы сапропеля является содержание до 17—60% гуминовых и фульвокислот и битумов (7 157о). Сапропель является хорошим источником витаминов. Вытяжка или гидролизаты сапропеля заменяют кукурузный экстракт при биосинтезе. Кроме того, как известно, сапропель — лечебная грязь, кормовая добавка и хорошее удобрение для почвы. [c.83]

    Характерной особенностью ферментов является специфичность их действия. Каждый фермент действует на строго определенный субстрат. Специфичность бывает абсолютная, когда фермент действует на один субстрат (уреаза), групповая— когда фермент действует на ряд соединений с определенными атомными группировками (липаза), а также стереохими-ческая — когда фермент действует на определенные стереоизомеры (р-глюкозооксидаза). Активность ферментов в клетке строго регулируется. Процесс биосинтеза ферментов находится под генетическим контролем. Активность ферментов регулируется концентрацией конечных и промежуточных продуктов превращения субстрата, а также условиями окружающей среды. [c.82]

    Пиклорам (4-амино-3,5,6-трихлорпиколиновая кислота) с растворимостью в воде при 25°С 430 мг/л нелетуч и очень устойчив. Даже спустя год после применения сохраняется в почве в значительном количестве. Высокоэффективный гербицид и арбори-цид, по действию сходный с ауксином. Характерной особенностью является способность подавлять биосинтез ароматических аминокислот. Приводит к локальному увеличению количества связанных с мембраной РНК- и ДНК-полимераз. В смеси с 2,4,5-Т используется главным образом для уничтожения кустарников. В ВНР выпускается под названием тордон. [c.23]

    Обобщая вышеизложенное, можно сказать, что характерной особенностью гербицидов данной группы является способность блокировать индуцированный светом биосинтез каротиноидов, вследствие чего накап.чиваются оп еделенные предшественники этйх соединений. [c.86]

    Одновременно с изучением распределения свободных аминокислот был исследован их метаболизм. Оказалось, что при использовании в качестве предшественника биосинтеза аминокислот и С-глюкозы или и С-пирувата нейроглиальные аминокислоты включают радиоактивный углерод в среднем в три раза интенсивнее. Несмотря на то, что эти исследования, выполненные в опытах in vitro, естественно, не могут в полной мере охарактеризовать свойства нейронов и нейроглии, все-таки можно предположить, что одной из характерных особенностей нейроглиальных клеток является более высокий метаболизм свободных аминокислот. [c.196]

    Этапы транскрипции. Процесс транскрипции в настоящее время принято подразделять на четыре основные стадии 1) связывание молекул РНК-полимеразы с ДНК и распознавание промотора 2) инициация , 3) элонгация, 4) терминация [41]. Три последних этапа характерны для биосинтеза большинства других макромолекул клетки, особенно для тех из них, синтез которых является матричным, в частности белков. После связывания с ДНК молекулы РНК-полимеразы осуществляют поиск промоторов, на которых происходит формирование инициационных комплексов. Начальная стадия инициации транскрипции завершается образованием нескольких первых фосфодиэфирных связей в молекуле вновь синтезируемой РНК, после чего транскрипция переходит в стадию элонгации - последовательного удлинения синтезируемых молекул РНК. Стадия элонгации заканчивается по достижении молекулами РНК-полимераз специальных регуляторных последовательностей ДНК, называемых терминаторами транскрипции, после чего происходит освобождение синтезированных молекул РНК и РНК-полимераз из транскрипционных комплексов. Освободившиеся молекулы РНК-полимераз приобретают способность вступать в новый цикл транскрипции. Следует помнить, что четкого разделения единого процесса транскрипции на отдельные стадии в реальной жизни не существует оно используется главным образом для удобства описания механизмов биосинтеза РНК и является упрощением. [c.31]

    В издании рассмотрены все основные классы природных соединений, для которых приведены кпассификации, особенности молекулярной структуры, таблицы типичных представителей, схемы характерных химических реакций, значимые медико-биологические свойства, пути биосинтеза, природные источники При создании книги использована оригинальная литература по 2000 год вкпючительно Содержание книги отражено в 13 главах Введение, Простейшие бифункциональные природные соединения. Углеводы, Аминокислоты, пептиды и белки. Липиды жирные кислоты и их производные, Изопреноиды-1, Изопреноиды-И, от сесквитерпенов до политерпенов. Фенольные соединения. Алкалоиды и порфирины. Витамины и коферменты, Антибиотики, Разные группы природных соединений, Металло-знзимы, Предметный указатель [c.2]

    Характерной и, по-видимому, уникальной особенностью образования ци-токининов является то, что они представляют собой фрагмент сириновой и тирозиновой тРНК и освобождаются при распаде последних. Цитокинины стимулируют процессы клеточного деления, а в некоторых растениях — растяжение клеток в листьях. Эти гормоны регулируют активность ряда ферментов, а также влияют на процессы биосинтеза РНК и белка. [c.141]

    Фенантреновые фенолы особенно характерны для растений семейства орхидей (ОгсШйасеае), в которых они выполняют функцию фитоалексинов. Их биосинтез здесь осуществляется путем внутримолекулярного фенольно- [c.406]

    Репрессия под действием конечных продуктов характерна для процессов биосинтеза (анаболизма) аминокислот, витаминов, пуринов и пиримидинов индукция же, как правило, имеет место при распаде (катаболизме) источников углерода и энергии Совершенно очевидно, что регуляция необходима для обеспечения экономичности работы белоксинтезирующей системы. Синтез ферментов любого метаболического пути включается или выключается в зависимости от того, сколь велика в данный момент потребность клетки в этом пути. Зачем синтезировать белки, если они не нужны Особенно ярким примером того, как с помощью индукции и репрессии обеспечивается строгий контроль над синтезом определенной группы белков, может служить регуляция образования ферментов, катализирующих распад миндальной кислоты (точнее ее солей — манделатов) у Pseudomonas. Ниже приведена предполагаемая последовательность реакций распада. [c.536]

    Наличие алкильных заместителей характерно для фенолов, образующихся ацетатным (малонатным) путем. Алкильные группы вводятся в мета-поло-жение к гидроксильным группам при биосинтезе ароматического кольца. С другой стороны, алкильные группы (особенно метильная и изоамильная), находящиеся в орто- и лара-положениях к фенольному гидроксилу, вводятся прямым алкнлировапием по атому углерода, причем для биосинтетических реакций имеются близкие аналоги, осуществленные в лаборатории. Важным требованием является наличие карбониевого иона, который образуется в результате гетеролитического разрыва сильно полярной связи R — X (80). [c.27]

    Использование полиацетильной цепи для образования углеродного скелета алкалоидов, принадлежаш их к разным группам, особенно важно для алкалоидов Ьусоро(1шт, биосинтез которых протекает, как было постулировано [12], согласно схеме, приведенной на фиг. 117. Хотя эта гипотеза пока еш е не получила экспериментального подтверждения, однако она объясняет, каким образом различные в структурном отношении соединения могли бы иметь общее происхождение в процессе биосинтеза. Кроме того, эта гипотеза показывает, каким образом весьма разнообразные по строению алкалоиды, характерные для данной группы растений, фактически представляют собой всего лишь вариации одного основного пути биосинтеза, характерного для этой группы растений. [c.315]

    Тот факт, что протеины и липиды асимметрично распределены и ориентированы в биомембранах, оказывает большое влияние на перенос вещества. Как протеины, так и липиды сохраняют свою односторонность, т. е. для них не характерны перестановки флип-флоп в бислое. Однако протеины способны участвовать в латеральном движении в пределах своего монослоя. Такая облегченная латеральная диффузия, вероятно, связана с гидрофобной природой мембранных протеинов (по сравнению с водорастворимыми протеинами), которая, в свою очередь, приводит к относительно слабым взаимодействиям. Латеральная диффузия также обусловлена наличием дефектных структур, которые становятся особенно заметными вблизи температуры фазового перехода. Установлено, что асимметрия протеинов возникает в процессе биосинтеза. Протеины, которые находятся на внешней поверхности клетки (экзопротеины), как правило, содержат углеводы, а протеины, которые находятся на внутренней (цитоплазматической) поверхности клеточных мембран (эндопротеины), их не содержат. Углеводороды, по всей вероятности, стабилизируют или блокируют экзопротеины, и по ним также можно опознавать поверхность клетки. Большая часть протеинов располагается на внутренней, а не на внешней поверхности бислоя. [c.326]

    Функции, нуклеотцдный состав и структура РНК. Все типы РНК предназначены для снятия информации о структуре белка с ДНК и обеспечения биосинтеза белка в соответствии с этой информацией. РНК является одиночной полинуклеотидной цепью, построенной из четырех основных типов рибонуклеотидов — АМФ, ГМФ, ЦМФ и УМФ. Для РНК характерны минорные нуклеотиды с необычными азотистыми основаниями — дигидроурацилом, 3-метилурацилом, 1-метилгуанином и другими (до 50 типов). Особенно их много в ами-ноацил-тРНК (до 10% от всех нуклеотидов). В РНК содержание аденина и гуанина не соответствует содержанию урацила и цитозина. [c.294]

    Химическая структура нуклеиновых кислот различного происхождения неодинакова. Нуклеиновые кислоты цитоплазмы и ядра клетки отличаются друг от друга по своим химическим особенностям. Имеются основания полагать, что качественный состав нуклеиновых кислот клетки не остается постоянным, а зависит от условий среды, от процессов обмена веществ в клетке. Между тем структура нуклеиновых кислот остается, в основном, характерной для каждого живого существа и определяет специфичность синтезирующихся в них белков. Более того, известно, что вирусы и бактериофаги, состоящие, в основном, из специфических для каждого из них нуклепротеидов, при внедрении их нуклеиновых кислот в поражаемые клетки, в случае благоприятных условий для размножения, включаются в ферментные системы, осуществляющие синтез белков, и изменяют обычный для клеток синтез белковых веществ. Все эти факты свидетельствуют о том, что нуклеиновые кислоты активно участвуют в процессах биосинтеза белков. Это, однако, еще не выявляет, в чем именно заключается роль нуклеиновых кислот. На этот счет существуют положения, которые находят свое экспериментальное подтверждение. [c.429]

    Описанные в данной главе эксперименты свидетельствуют в пользу использования in vitro мутагенеза клонированных генов НА для изучения функции гидрофобных областей белка. Существуют многочисленные возможности распространения этой технологии на другие участки молекулы, включая пептид слияния, антигенные сайты, сайт связывания рецептора и точки прикрепления углевода. Точный анализ роли индивидуальных аминокислот в структуре и функции белка может быть проведен при введении изменений в одном основании в определенных сайтах в гене НА с использованием олигонуклеотидуправляемого мутагенеза [32]. Хотя подобные эксперименты будут особенно уместны для нашего анализа молекулы НА, эти дополнительные результаты весьма ценны для понимания структуры и функции цельных мембранных белков в общем смысле. Не говоря об особенных свойствах, связанных с антиген-ностью и биологическим значением, структура молекулы НА характерна для основного класса клеточных мембранных белков. Более того, поскольку биосинтез НА включает ферменты клетки хозяина и процессы во время трансляции, мембранного транспорта, гликозилирования и созревания, НА представляет собой полезную модель для изучения мембранных белков и органелл. [c.184]

    Патофизиология этой группы заболеваний изучена на примере острой перемежающейся порфирии. Многие больные, у которых понижена активность порфобилиноген-де-заминазы, не страдают характерными для порфирии болями в области живота и нейропатией. Появление этих симптомов наблюдается при повышенной активности синтетазы б-аминолевуленовой кислоты (АЛК), первого фермента на пути биосинтеза порфирина, который определяет скорость всего процесса. Существовало мнение, что первичным нарушением при острой перемежающейся порфирии является как раз нарушение регуляции, приводящее к избыточному синтезу этого фермента. Биосинтез синтетазы АЛК индуцируется многими препаратами, например барбитуратом, стероидными гормонами и т. д., и в норме репрессируется конечным продуктом синтеза-гемом. Последний этап биосинтеза гема катализируется ферментом уропор-фириноген-синтетазой. При острой перемежающейся порфирии уровень фермента понижен, что приводит к снижению синтеза гема и в свою очередь к повышению активности АЛК-синтетазы. Вдвое сниженная активность фермента в этом случае недостаточна для нормального функционирования всей цепи биосинтеза, особенно в условиях стимуляции препаратами типа барбитуратов. В отличие от многих других ферментативных нарушений при острой перемежающейся порфирии мутация нарушает реакцию, которая играет ключевую роль во всем биосинтетическом пути. [c.121]

    Ограниченная при этом заболевании способность к синтезу гема (особенно в стрессовых условиях) приводит к дерепрессии АЛК-синтазы. В результате наблюдается избыточное образование АЛК и порфобилиногена, а также других интермедиатов на пути синтеза гема, образующихся на стадиях, предшествующих наследственно заблокированному этапу. Соответственно у пациентов с наследственной ко-пропорфирией обнаруживаются все признаки и симптомы, связанные с избытком АЛК и порфобилиногена, которые характерны для перемежающейся острой порфирии, но помимо этого у них имеется повышенная светочувствительность, обусловленная присутствием избыточных количеств копропорфириногенов и уропорфириногенов. При этом заболевании введение гематина также может вызвать по крайней мере частичную репрессию АЛК-синтазы и смягчение симптомов, обусловленных перепроизводством интермедиатов биосинтеза гема. [c.365]


Смотреть страницы где упоминается термин Характерные особенности биосинтеза: [c.514]    [c.129]    [c.62]    [c.194]    [c.328]    [c.366]    [c.328]    [c.206]    [c.236]    [c.29]    [c.37]    [c.133]   
Смотреть главы в:

Биохимия ТОМ 2 -> Характерные особенности биосинтеза




ПОИСК







© 2025 chem21.info Реклама на сайте