Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диазосоединения основность и реакция с ароматическими диазосоединениям

    Органические основания по своей природе так же многообразны, как и органические кислоты. Фактически все классы соединений за исключением углеводородов, их галогенопроизводных, тиоспиртов и тиоэфиров, нитро-, нитрозо- и диазосоединений обладают ясно выраженными основными свойствами. При этом по способности к протонированию (реакция 5.1) они располагаются в ряд амины неароматические > амины ароматические > спирты > > фенолы > простые эфиры > кетоны > альдегиды > азосоединения > сложные эфиры > амиды карбоновых кислот > карбоновые кислоты. Среди этих соединений выделяются неароматические амины, которые в водном растворе 138 [c.138]


    Реакции. Реакция азосочетания. Реакция азосочетания является примером реакции диазосоединений без выделения азота. Соли диазония как электрофильные реагенты способны взаимодействовать с ароматическими соединениями, обладающими высокой основностью (амины и фенолы), с анионами достаточно сильных алифатических СН-кислот (анионы малонового и ацетоуксусного эфиров, алифатических нитросоединений), а также с алкенами (бутадиеном-1,3, изобутиленом, виниловыми эфирами и др.). [c.437]

    Способы получения. Основной способ получения ароматических диазосоединений — действие азотистой кислотой на соль первичного ароматического амина в кислой среде (реакция диазотирования). Реакция протекает в несколько стадий сначала образуется соль амина, затем азотистая кислота, которая и вступает в реакцию диазотирования  [c.177]

    Для получения азокрасителей в производстве применяют, в основном, способ, заключающийся в последовательном проведении двух реакций — диазотирования и азосочетания. Реакция диазотирования заключается во взаимодействии первичных ароматических (или некоторых гетероциклических) аминов и азотистой кислоты, с образованием диазосоединений. [c.267]

    Реакции ароматических диазосоединений настолько разнообразны, что здесь имеется возможность рассмотреть лишь основные типичные примеры. [c.610]

    Бензол является простейшим представителем ароматических соединений и его свойства могут рассматриваться как типичные. Наиболее важные из них следующие легкость образования ароматических колец в самых различных реакциях, устойчивость к действию окислителей, трудное протекание реакций присоединения по кратным связям, легкость замещения водорода различными группами в реакциях электрофильного замещения (нитрования, сульфирования, галогенирования, ацилирования, алкилирования, мер-курирования и т. д.). Характерными свойствами обладают и некоторые заместители в ароматических системах (имеются в виду кислые свойства ароматического гидроксила, ослабленная основность аминогруппы, устойчивость диазосоединений, способность к реакциям азосочетания, малая реакционность галогена в ядре и др.). [c.557]

    Реакция диазотирования, приложимая в основном к первичным ароматическим аминам (реже — к гетероциклическим), превращает последние в так называемые диазосоединения, обладающие большой реакционной способностью. [c.83]


    Основные научные работы посвящены изучению ароматических диазосоединений и их применению в производстве красителей. Открыл (1904) реакцию обратимого обмена аминогруппы на гидроксил в ряду нафталина под действием водных растворов бисульфитов (реакция Бухерера). Синтезировал (1934) гидаитоины из карбонильных соединений, синильной кислоты и карбоната аммония. [228] [c.89]

    С момента опубликования первого тома этой серии в 1952 г. химия солей диазония получила развитие в трех основных направлениях. Первое связано с выяснением некоторых деталей сложной кинетики реакции диазотирования. Обсуждению этих результатов будет посвящена первая часть данной главы. Второе направление состоит в развитии метода прямого введения диазониевой группы . Эту реакцию, которая в настоящее время достаточно изучена, лучше называть получением диазосоединений через нитрозопроиз-в одные. Рассмотрению этого процесса посвящена вторая часть главы. Третье направление связано с детальным изучением механизма реакции азосочетания, которое привело к значительно большему пониманию химии этого процесса. Данные, полученные в этой области, внесли значительный вклад в общие представления о реакциях ароматического замещения в целом. Этим успехам посвящена заключительная часть главы. [c.1870]

    Хотя получение азокрасителей возможно несколькими путями (и некоторые из них изредка применяются в технике), основным способом их получения является реакция азосочетания— взаимодействие между ароматическим диазосоединением и так называемой азосоставляющей, принадлежащей чаще всего к группе ароматических или гетероциклических амино- или оксисоединений. Реакция обычно проводится в водных растворах, протекает быстро и приводит к высоким выходам конечного азокрасителя. [c.5]

    В самом начале главы было сказано, что основным способом получения азокрасителей является реакция азосочетания — взаимодействие ароматического диазосоединения (как мы выяснили, соли диазония) с азосоставляющей, или азокомпонентой. Азосоставляющей принято называть молекулу, имеющую нуклеофильный центр, возникающий при ионизации или поляризации молекулы. К реакции азосочетания способны фенолы, амины и вещества с подвижными атомами водорода в метильной, метиленовой или метинной группах. Все эти соединения в одной из предельных электронных структур содержат нуклеофильный [c.47]

    Проявляющаяся в этих реакциях основность диазоалканов, т. е. способность их вступать в реакции с кислотами Льюиса (антиоснованиями), является также причиной взаимодействия с ароматическими диазосоединениями, например [50]  [c.593]

    При использовании п-хлор- или п-бромзамещенных ароматических солей диазония основной реакцией будет образование галоидбензолов, а не эфиров. Если проводить реакцию в пиридине, то в продуктах реакции будут присутствовать 2- и 4-фенилпиридины. Учитывая другие факты (например, термическое разложение неустойчивых перекисей или азосоединений, таких, как фенилтритилазо-метан в пиридине), можно сделать вывод, что образование фенилпиридинов, а следовательно, и восстановление диазосоединений спиртами идет через свободнорадикальную промежуточную стадию. [c.611]

    Второй основной реакцией процесса получения азокрасителей является азосочетание, в котором, кроме диазосоединений, участвуют азосоставляющие. В качестве последних наиболее широко применяются ароматические и гетероциклические окси- и аминосоеди- [c.589]

    Реакции. Аминогруппа нитроанилинов может алкилироваться и ацилироваться, но реакции протекают тем труднее, чем большее число нитрогрупп содержит молекула (т.е. чем меньше основность). Нитроанилины могут диазотироваться (тем труднее, чем меньшей основностью они обладают), причем диазотирование проходит в случае некоторых ароматических нитроаминов только в присутствии высоких концентраций минеральной кислоты. Диазосоединения, полученные из питроанилинов, обладают большой склонностью к сочетанию (том I). Подобные диазосоединения применяются в производстве азокрасителей. При кипячении с ш елочамй NHg группа о- и га-нитроанплинов отш епляется в виде аммиака, причем получаются соответствуюш ие нитрофенолы. [c.458]

    Наконец, весьма характерными являются свойства некоторых производных ароматических соединений. Так, ароматические амины менее основны, чем алифатические, и при реакции с азотистой кислотой образуют диазосоединения, способные вступать в реакцию азосочетания. Ароматические оксисоединения (фенолы) обладают значительно более кислым характером, чем алифатические оксисоединения (спирты). Ароматические галоидопроизводные, не содержащие активирующих групп, значительно труднее вступают в реакции замещения, чем алифатцческие. [c.8]


Смотреть страницы где упоминается термин Диазосоединения основность и реакция с ароматическими диазосоединениям: [c.566]    [c.588]    [c.145]    [c.268]   
Новые воззрения в органической химии (1960) -- [ c.593 ]




ПОИСК





Смотрите так же термины и статьи:

Диазосоединения

Диазосоединення



© 2025 chem21.info Реклама на сайте