Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фенолы реакционная способность

    Охарактеризуйте влияние заместителей в бензольном кольце на скорость нитрования ароматического соединения. Расположите следующие соединения в порядке возрастания их реакционной способности а) толуол б) бензол в) хлорбензол г) нитробензол д) ж-ди нитробензол е) фенол. [c.148]

    В щелочной среде электрофильная реакционная способность формальдегида определяется только наличием дефицита электронной плотности на атоме углерода его карбонильной группы, поэтому в реакцию гидроксиметилирования вступает меньшее число ароматических соединений, чем в реакцию хлорметилирования. Так, в реакцию хлорметилирования помимо фенола и его эфиров вступают бензол и его гомологи и даже хлорбензол, тогда как реакцию гидроксиметилирования удается осуществить только в случае анилина и Л ,Л -диалкил-анилинов, фенола и его эфиров. [c.396]


    Как ясно из изложенного, гидролиз хлорпроизводных с замещением атома хлора осуществляют в избытке воды при помощи соды (получение спиртов) или едкого натра (синтез фенолов). В зависимости от реакционной способности хлорпроизводных процесс проводят при температуре от 120—125°С (гидролиз хлористого аллила) до 300—350°С (гидролиз хлорбензола). Очевидно, что для поддержания смеси в жидком состоянии требуется давление от 0,5—1 до 10 МПа. В этих условиях время контакта изменяется от нескольких минут до 20—30 мин. [c.178]

    Многие реакции нуклеофильного замещения проводятся с участием амбидентных анионов (анионов, обладающих двойственной реакционной способностью). К таким ионам относятся, например, нитрит-ион 10—Ы —01 . цианид-ион [ С енолят- и фенолят- [c.99]

    Резорцин (1,3-дигидроксибензол) является очень перспективным исходным материалом для получения ФС. К сожалению, резорцин относительно дорог, вследствие чего его используют почти исключительно для специальных целей, в частности для изготовления клеев холодного отверждения [27]. В этом случае он незаменим благодаря своей значительно более высокой, нежели у фенола, реакционной способности по отношению к формальдегиду [26]. [c.29]

    Замещение в бензольном ядре фенольного гидроксила на сульфгидрильную группу понижает подвижность атомов водорода бензольного ядра. Поэтому при взаимодействии, например, тиофенола с циклогексеном в присутствии ВРз -0(С2П5)2 при 95—97°С реакция протекает за счет подвижного водорода сульфгидрильной группы, в результате получается циклогексиловый эфир тиофе-иола с ВЫХОДОМ 74,8% и не образуются в ядре алкилзамеш ениые тиофенола. Таким образом, если исходить из выходов продуктов алкилирования, то изученные фенолы и их алкиловые эфщры по убывающей химической реакционной способности можно расположить приблизительно в следующий ряд фенол > крезолы > > гваякол > анизол и фенетол > тиофенол > нитрофенолы. [c.170]

    Эхо обусловлено недостаточным развитием пространственной структуры полимера вследствие меньшей,чем у фенолов,реакционной способности ароматических углеводородов по отношению к формал егиду. [c.64]

    В присутствии фенолята алюминия при нагревании дифенилолпропана в течение 20 ч при 125, 140, 175 и 200 °С алкилирование диизобутиленом не происходит. В продуктах реакции были обнаружены только вышеуказанные алкилированные продукты распада — 2- и 4-(трет-октил)-фенол и 2,4-ди-(тре/п-октил)-фенол. Отсутствие среди продуктов реакции алкилированного дифенилолпропана авторы объясняют стерическими препятствиями вступлению трет-октильных групп в орто-положение к гидроксилу и низкой реакционной способностью диизобутилена. [c.22]


    Реакционная способность спиртов при винилировании уменьшается с повышением их кислотности. Поэтому нз насыщенных одноатомных спиртов медленнее всех реагирует метиловый спирт, для винилирования которого приходится поддерживать температуру 160—170 °С (для высших спиртов она снижается до 130— 140 С). С фенолом требуются еще более жесткие условия (до 200 °С). [c.302]

    Учитывая высокую реакционную способность, полярность, окислительно-восстановительные свойства фенолов, исследовалось их содержание в нефтепродуктах. Из керосиновой фракции 140— 240°С нефтей Западной Сибири, содержавшей 0,05% общей и 0,03 % сульфидной серы, извлекали гетероатомные соединения комплексообразованием с хлоридом титана (IV). Обработка фракций производилась при комнатной температуре комплексообразователем (0,5 % от массы сырья). Выход концентрата со средней молекулярной массой 172 составил 0,25%. Для отделения кислот и фенолов концентрат обрабатывали 10 % раствором щелочи. Выход фенольного концентрата составил 0,05 % [364, с. 46]. Несмотря на то, что нефть и нефтепродукты содержат большие массы фенолов — ценного сырья для нефтехимии, экономически выгоднее пользоваться ненефтяными источниками для получения фенолов. Отрицательное влияние фенолов на эксплуатационные свойства нефтепродуктов должны учитываться как при разработке процессов очистки, так и при применении товарных топлив. [c.261]

    Окись этилена — соединение жирного ряда, обладающее высокой реакционной способностью. Та легкость, с которой окись этилена вступает в многочисленные реакции присоединений, определяется нестойкостью эпоксидного трехчленного кольца, раскрывающегося под действием различных веществ. Как уже сообщалось, окись этилена очень легко присоединяет хлористый водород с образованием этиленхлоргидрина. Реакция протекает настолько гладко, что при пропускании газообразной окиси этилена в растворы хлоридов металлов, например железа или меди, тотчас же осаждается соответствующая гидроокись это явление заставило еще Кекуле приписать окиси этилена основные свойства. Окись этилена реагирует со спиртами, фенолами, органическими кислотами, аммиаком, гриньяровскими соединениями, синильной кислотой, сероводородом и т. п. Ниже приведено несколько примеров этих реакций. [c.400]

    С другой стороны, повышение электронной плотности связанного с фенольным гидроксилом бензольного ядра повышает реакционную способность фенолов в реакциях с электрофильными реагентами. Так, фенол легко броми- [c.152]

    Гидроксигруппа в фенолах оказьшает значительное влияние на реакционную способность бензольного ядра. Будучи электронодонором, она способствует увеличению электронной плотности в ядре и облегчает тем самым реакции электрофильного замещения. Нитрование, галогенирование фенола происходит преимущественно в орто-и пара-положениях. [c.330]

    Гидроксигруппа в фенолах оказывает значительное влияние на реакционную способность бензольного ядра. Будучи электронодонором, она способствует увеличению электронной плотности в ядре и облегчает тем самым [c.370]

    Следующие соединения расположите в ряд по увеличению реакционной способности при бромировании их в бензольное кольцо а) бензол б) фенол в) бензальдегид г) этилбензол. Дайте объяснения. [c.123]

    При сочетании с фенолами наблюдается почти исключительная / -ориентация. Отсутствие о-замещепия объясняется, вероятно, очень низкой реакционной способностью и высокой избирательностью реагента, благодаря чему оно не в состоянии преодолеть сравнительно небольшие пространственные затруднения, встречающиеся при о-замещении фенолов. Несколько другое объяснение можно найти у Уотерса [305]. [c.459]

    Основываясь на схеме механизма, предложенной Лейбницем и Науманном, автор представляет процесс так протонирование ацетона (fei и k i — константы скорости прямой и обратной реакций), взаимодействие карбкатиона ацетона с фенолом и образование карбинола (константа скорости дегидратация карбинола с образованием карбкатиона п-изопропенилфенола (feg и k — константы скорости прямой и обратной реакций) и образование дифенилолпропана (константа скорости k . Протекание процесса через промежуточное образование карбинола доказывается следующим образом. Предполагая, что вследствие высокой реакционной способности концентрация карбкатиона п-изопропенилфенола мала и вскоре после начала процесса становится стационарной, автор, пользуясь методом стационарных концентраций, получил следующие уравнения для скоростей реакций  [c.85]

    Такую огромную разницу в реакционной способности In—Н-и К—Н-связей можно объяснить тем, что переходные состояния PhO- -Н---00R и AriAr2N- -Н- -ООК имеют биполярную структуру, в которой положительно заряженный атом водорода находится между двумя отрицательно заряженными атомами кислорода в случае фенола и между отрицательно заряженными атомами азота и кислорода в случае ароматического амина [171] [c.102]

    Тот факт, что источником образования побочных продуктов является оксифенильный радикал, а не фенол, подтверждается тем, что при гидрогенизации фенола в идентичных условиях 70% его остается неизменным, а количество насыщенных углеводородов составляет доли процента. Источником насыщенных углеводородов не может быть также и фенильный радикал, так как при гидрировании ароматических углеводородов доля насыщенных углеводородов гоже весьма незначительна (0,05—0,7%). В отсутствие катализатора (см. табл. 34) доля насыщенных углеводородов уменьшается до 2,3%, следовательно, малоактивный железный катализатор может ускорять реакции гидрирования только очень рбакционноспособных соединений, каким и является оксифенильный радикал. Предположение о более высокой реакционной способности радикала оксифенила по сравнению с фенилом подтверждается также и термодинамическими данными энтальпия образования радикала оксифенила 32,1 ккал/моль, а для радикала метила — 32,6 ккал/моль [c.190]


    Кислотная очистка заключается в обработке масла концентрированной серной кислотой и позволяет удалить асфальто-смолистые соединения и другие продукты окисления, а также компоненты, способствующие возникновению в масле этих продуктов, — непредельные углеводороды и часть ароматических, Серная кислота вступает в реакции с загрязнениями, имеющими наибольшую реакционную способность, — со смолами, ас-фальтенами, карбоновыми и оксикислотами, фенолами и другими веществами. Процесс химической очистки сопровождается физико-химическими явлениями, так как серная кислота для некоторых веществ — растворитель. [c.113]

    На кафедре органической химии и химии нефти РГУ нефти и газа имени И.М. Губкина на протяжении многих лет традиционными являются работы в области синтеза, изучения реакционной способности и химических превращений и поиску возможных областей практического применения пяти- и шестичленных азотсодержащих гетероциклических соединений с двумя и тремя гетероатомами, а также производных проетранетвенно-затрудненньк фенолов (аминов, нитрилов, иминоэфиров, мочевин и т.д.) [c.43]

    Зависимость реакционной способности кислотной и спиртовой компоненты от их строения одинакова при этерификации кислотами, ангидридами и хлорангидридами. Строение спирта влияет на скорость реакции таким же образом, как на ее равновесие, т. е. с удлинением и разветвлением алкильной группы скорость реакции снижается. Особенно медленно этерифицируются третичные спирты и фенолы — для них скорость реакции примерно в 100 раз меньше, чем для первичных спиртов. Вторичные спиртовые группы этерифицируются в 6—10 р сз медленнее первичных. [c.208]

    Синтез простых эфиров из хлорпроизводных применим для широкого круга веществ, причем скорость реакции зависит как от нукл( 0фильн0сти алкоголята (фенолят), так и от реакционной способности хлорпроизводного, которая изменяется в последовательности, обычной для нуклеофильных реакций. [c.267]

    Реакционная способность карбонильных и ароматических соединений изменяется в данных процессах в обычном порядке. 1 алогенбензолы еще способны к зтпм превращениям, но ароматические вещества с более электроотрицательными группами в реакцию не вступают. Наоборот, фенол взаимодействует с реакционно-способными альдегидами (особенно с формальдегидом) не только нри кислотном катализе, но и при щелочном, что обусловлено пе-ре Содом фенола в более активную форму фенолята, способного прямо взаимодействовать с альдегидом  [c.550]

    Наиболее легко в присутствии эфирата фтористого бора алкилируется олефинами сам фенол. Нри этом алкильные группы всегда направляются в орто- и пара-положения и практически не вступа-ют в мета-положение благодаря сильному ориентирующему влиянию группы ОН. При введении в ядро какого-либо заместителя реакционная способность фенола понижается, но степень такого понижения сильно зависит от природы заместителя и его положения в ядре.. Введение алкильных групп в ядро незначительно понижает реакционную способность фенола. Так, все три изомерных крезола сравнительно легко алкилируются олефинами и циклогексеном в нрисутствии фтористого бора с образованием смеси эфирных и фенольных соединений, нричвм, но даяным Ле-васа [52], циклогексеном лучше других алкилируется -крезол, хуже вступает в реакцию о-крезол и еще труднее п-крезол. Такое различие реакционной способности крезолов хорошо видно из данных табл. 101. [c.169]

    Введение в орто- или пара-положение фенола питрогруппы оказывает очень сильное пассивирующее влияние на реакционную способность фенола, делает его инертным но отношению к олефинам в присутствии катализатора ВРз 0(С2Н5)г. С более сильным катализатором — свободным фтористым бором тг-нитрофенол и циклогексен образуют циклогексил- г-нитрофенол, но выход его не превышает 5% от теоретического. [c.169]

    Реакция со спиртами является общей для диазосоединений, но чаще всего ее проводят с использованием диазометана для получения метиловых эфиров или с использованием диазокетонов для приготовления а-кетоэфиров, что обусловлено доступностью этих диазосоединений. В случае диазометана [493] метод дорог и требует особой осторожности. Он обычно применяется для метилирования спиртов и фенолов, стоимость которых высока или которые доступны лишь в малых количествах, так как эта реакция проводится в мягких условиях и дает высокий выход продуктов. Реакционная способность гидроксисоединений возрастает по мере увеличения их кислотности. Обычные спирты в отсутствие катализатора не реагируют. Катализатором может служить HBF4 [494], ацетат родия (II) Rh2(OA )4 [495] или силикагель [496]. Более кислые фенолы реагируют и без катализатора. Оксимы и кетоны, для которых характерен значительный вклад енольной формы, вступают в реакцию 0-алкилирования, давая соответственно 0-алкилоксимы и эфиры енолов. Механизм [497] здесь тот же, что и в реакции 10-6  [c.122]

    Положительным концом диполя являются гетероатомы, передающие для образования ароматической системы по одной паре р-электронов, а отрицательным — углеводородная часть гетероцикла. Поэтому ароматическое кольцо в этих соедине ниях имеет большую электронную плотность, чем бензол. По реакционной способности к бензолу наиболее близок тиофен в этом отношении его можно сравнивать с нафталином и ант раценом. По реакционной способности пиррол и фуран превос ходят даже фенол и анилин. [c.352]

    Таким образом, на реакционную способность фенолов влияет не только положение алкильного радикала в ядре, но и его строение. Верояпно, чем сложнее алкильная группа в ядре, тем труднее алкилируются фенолы. [c.173]

    Однако исследования показали, что у бромистого аллила в данной реакции, как и в реакции с органическими кислотами, двойная связь обладает пониженной реакционной способностью вследствие присутствия ио соседству атома брома. В то же время двойная связь способствует ослаблению связи между углеродом и атомом брома. Поэтому носледний в бромистом аллиле становится подвижным и способен замещаться на ароматический остаток. Вследствие этого фенол с бромистым аллилом в присутствии ВРз-0(С2Н5)2 в молярных отношениях 1 1 0,08 при температуре 97° реагирует путем присоединения к нему по месту двойной связи и путем конденсации за счет атома брома. [c.194]

    Алкилирование фенолов олефинами, как показано в главе 1П, изучено сравнительно хорошо в присутствии различных катализаторов, в том числе и на основе фтористого бора [43,44]. Эта реакция в настоящее время приобрела большой практический интерес и осуществляется в промышленных масштабах. Что же касается алкилирования галоидфенолов олефинами, то оно почти никем не изучалось. И это несмотря на то, что галоидфенолы являются веществами сравнительно доступными и обладают высокой реакционной способностью. В литературе описано только алкилирование /г-хлор- и /г-бромфенолов изобутиленом в присутствии H2SO4 в [c.203]

    Перегруппировка Фриса. Фенол обладает высокой реакционной способностью и склонностью к смолообразованию, поэтому получить с хорошими выходами моноацилированное производное фенола по Фриделю — Крафтсу не удается. Однако этой цели можно достигнуть, если предварительно получить 0-ацильное производное фенола и затем нагреть его с хлоридом алюминия  [c.391]

    Расход реагента рассчитывается по активному хлору. Он вводится с учетом необходимой степени очистки и реакционной способности веществ сточных вод. В каждом случае доза хлора и время его контакта с водой устанавливаются пробным хлорированием. Остаточные концентрации до 0,5 мг/л активного хлора быстро исчезают при введении хлорированных сточных вод в водоем, что не вредит ни рыбам, ни растениям, если нет в водоеме ошутимых количеств фенолов, которые могут образовать хлорфенол. Это вещество даже в ничтожных количествах придает воде и рыбе неприятный аптечный запах. [c.234]

    Поликонденсация - реакция между полифункциональными молекулами, которые присоединяются друг к другу с отщеплением какой-либо простой молекулы (обычно воды). В отличие от полимеризации, которая происходит как цепной механизм (т. е. промежуточные соединения вещества представляют собой реакционно способные частицы-радикалы или ионы), поликонденсация протекает ступенчато с образованием на каждой стадии устойчивых соединений, требующих дальнейшей активации. Конечными продуктами поликонденсации могут быть макромолекулы с различной структурой, в зависимости от условий проведения реакции. Рассмотрим механизм поликонденсации на г риг. гре взаимодействия фенола и формальдегида. Продуктом этой поликоядесации являются фенолформальдегидные смолы. [c.235]

    В гетероциклических системах различные положения тоже неэквивалентны и к ним применимы такие же правила ориентации, как и к другим циклическим системам. Замещение в фу-ране, тиофене и пирроле направляется главным образом в положение 2 и идет быстрее, чем в бензоле [64]. Пиррол особенно активен, его реакционная способность приближается к реакционной способности анилина и фенолят-иона. В случае пиридина [65] атака происходит не на само свободное основание, а на его сопряженную кислоту — ион пиридиния [66]. Положение 3 обладает наивысшей реакционной способностью, но общая активность пиридина значительно ниже, чем бензола, и аналогична нитробензолу. Однако в положение 4 пиридина можно вводить группы косвенным путем, проводя реакцию с соответствующим Н-оксидом пиридина [67]. [c.324]

    Реакция сульфирования находит очень широкое применение, и в нее были введены многие типы ароматических углеводородов (включая конденсированные циклические системы), арилгалогениды, простые ароматические эфиры, карбоновые кислоты, ацилированные амины, кетоны, нитросоединения и сульфокислоты [139]. Фенолы также можно успешно сульфировать, но реакция может осложняться конкурентной атакой по кислороду. Для сульфирования часто применяют концентрированную серную кислоту, но можно использовать также дымящую серную кислоту, 50з, С18020Н и другие реагенты. Как и в случае нитрования (реакция 11-2), имеется широкий ассортимент реагентов различной реакционной способности для проведения реакции как с высокоактивными, так и с инертными субстратами. Поскольку эта реакция обратима (см. реакцию 11-44), то для доведения ее до конца может потребоваться внешнее воздействие. Однако при низких температурах обратная реакция идет очень медленно, поэтому прямое взаимодействие оказывается практически необратимым [140]. Серный ангидрид реагирует значительно быстрее, чем серная кислота,— с бензолом взаимодействие идет практически мгновенно. Побочно часто образуются сульфоны. При введении в реакцию сульфирования субстратов, содержащих в кольце четыре или пять алкильных заместителей или атомов галогена, обычно происходят перегруппировки (см. реакцию 11-42). [c.341]

    Рассмотрите реакционную способность различных углеродаых атомов фенола в этих состояниях по отнощению с электрофильнь м и нуклеофильным реагентам. [c.69]


Смотреть страницы где упоминается термин Фенолы реакционная способность: [c.1144]    [c.102]    [c.103]    [c.207]    [c.210]    [c.219]    [c.74]    [c.176]    [c.205]    [c.221]    [c.161]    [c.14]    [c.334]    [c.353]   
Фенольные смолы и материалы на их основе (1983) -- [ c.41 ]

Химия справочное руководство (1975) -- [ c.238 , c.240 ]

Химия лаков, красок и пигментов Том 1 (1960) -- [ c.299 ]




ПОИСК







© 2025 chem21.info Реклама на сайте