Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Морин урана

    Для определения микроколичеств урана в тории последний связывают комплексоном III и при pH 3,5 уран экстрагируют раствором ТБФ в керосине. Уран можно реэкстрагировать карбонатом [102] или определять непосредственпо в экстракте с помощью 1-(2-пиридилазо)-2-нафтола в метаноле. При реакции освобождается кислота для связывания последней прибавляют пиридин [103]. Описан также аналогичный метод, в котором уран реэкстрагируют и определяют с помощью морина [104, 105]. [c.236]


    Морин был также применен Гейгером и Сенделом при флуо-рометрическом определении циркония [74]. Цирконий ъ 2 М растворе соляной кислоты образует с морином интенсивную флуоресценцию, которая гасится при добавлении комплексона. Некоторые другие элементы, например алюминий, бериллий, галлий, сурьма, олово, торий и уран, в одинаковых условиях дают только слабую флуоресценцию, на которую не оказывает влияния присутствие комплексона. Путем измерения величины флуоресценции до и пссле добавления комплексона находят содержание циркония по соответствующей калибровочной кривой. Удовлетворительные результаты были достигнуты, например, в присутствии алюминия в растворе в отношении А1 2г = 1 10000. Железо также не мешает, если оно восстановлено меркаптоуксусной кислотой. [c.543]

    Описаны мало чувствительная реакция мышьяка с морином (желто-зеленая флуоресценция) [232] и неизбирательное тушение свечения слабо сернокислого раствора уранил-ацетата [245]. [c.168]

    Определение урана с помощью морина. Сходные по строению реагенты группы пентагидрооксифлавонов морин [328, 329, 331, 9591, кверцетин [669], гематеин [934] и их производные [960] дают с ураном достаточно чувствительные реакции. Наибольшее применение в аналитической практике получил морин. Спиртовый раствор морина имеет лимонно-желтый цвет, с ураном морин образует в щелочЕюй среде при pH 8—10 коричневое окрашивание. Спектр поглощения растворов реагента и комплекса представлен на рис. 13. [c.128]

    П. Н. Палей и А. В. Давыдов, изучая возможность применения методики определения урана с морином Алмаши и Нади [328], показали, что уран можно определять в присутствии трехкратных количеств никеля и кобальта, тысячекратных количеств нитрат- и сульфат-ионов, десятикратных количеств фтора и фосфатов. Изучалось также влияние ванадия. В присутствии пятивалентного ванадия получаются очень заниженные данные, так как ванадий окисляет морин. Добавлением 1 мл сернистокислого натрия восстанавливают ванадий, который в восстановленном состоянии связывается комплексоном HI, чем исключается окисление реагента и, таким образом, присутствие десятикратных количеств ванадия не мешает определению урана. [c.129]

    Окрашенные комплексы образуются при взаимодействии уранил-иона с салициловой [состав 1 2, константа диссоциации равна 1,24-10 [477]) и сульфосалициловой кислотами [8, 332, 606] с ж-оксибензойной кислотой [8, 606], салициламидом [417], с мо-реллином (ШО/ 1 мореллин) [701 ], ализарином красным 5 (устойчивый комплекс при pH 8,2 состава 1 1) [927, 993] с морином [328], с ауринтрикарбоновой кислотой [комплекс состава 1 1, [c.24]


    Сопоставление различных реагентов, рекомендованных для определения урана, в том числе арсеназо I, арсеназо П, пирокатехинового фиолетового, торона, морина, арсеназо III и хлорфосфо-пазо III, показало, что наиболее эффективными являются арсеназо III [7, 8] и хлорфосфоназо III [9]. Их преимущество состоит в том, что они обладают чрезвычайно высокой чувствительностью, п реэкстракция урана из органической фазы оказывается наиболее полной. Кроме того, оптическая плотность реэкстрактов, особенно в случае хлорфосфоназо III, в широких пределах не зависит от колебания pH реэкстракта. Максимальное развитие окраски в случае использования арсеназо III имеет место при pH 1,5—3,0, а в случае хлорфосфоназо III — при pH 0,5—3,0, в то время как арсеназо I, торон, морин и пирокатехиновый фиолетовый позволяют определять уран в растворах с pH 6,0 и выше. [c.286]

    Метод отличается исключительно высокой чувствительностью— порядка 10- —10 7 моль/л и чаще всего используется для определения низких концентраций ионов металлов, связанных в форме, подходящих флуоресцирующих комплексов, а также для определения некоторых органически веществ типа рибофлавина, витаминов группы В, алкалоидов и др. Так, комплексы 8-оксихинолина с рядом таких ионов металлов, как А1 , Оа +, Мд +, используются для ояределения этих ионов при концентрациях, достигающих 0,01 мкг/мл. Алюминий определяется при помощи флуоресцентных методов с 8-оксихинолином, морином или понтахромом сине-черным Р при содержании от Ы0- до 1% в различных сплавах и минералах. Флуоресцентный метод можно использовать не только для анализа растворов, но и для анализа веществ в твердой фазе. Так, уран в абсолютных количествах порядка Г-10- г можно определить при помощи-сплавления исследуемого вещества с бо-раксом или фторидом натрия до маленьких бусинок, облучения бусинок ультрафиолетовым светом и измерения вторичной эмиссии в видимой области спектра. .  [c.399]

    В среде концентрированной или умеренно концентрированной соляной кислоты бериллий, магний, кальций, стронций и барий поглощаются анионитами слабо или вовсе не поглощаются. Поэтому щелочноземельные металлы могут быть отделены от металлов, хорошо поглощающихся анионитами. Практически применяется ряд методов. Ю. В. Морачевский, М. Н. Зверева и Р. Рабинович [47 ] предложили отделять свииец от бария в 0,ЪМ HGL Известно также определение кальция и магния (и других элементов) в пирротите [86] и в вулканизированной резине [23], а также радиохимическое определение активности бериллия в присутствии урана и различных продуктов деления [8]. Следует упомянуть о микроопределении бериллия в фильтровальной бумаге. Медь, цинк, железо и уран, мешающие фторометрическому определению бериллия с морином в качестве индикатора, элюируются 9М соляной кислотой [21]. [c.316]

    Однако флуориметрия имеет часто преимущество перед колориметрией вследствие очень большой ее чувствительности (гра-ница чувствительности флуоресцентных методов лежит ниже, чем у колориметрических). Так, например, с помощью морина флуори-метрически можно обнаружить бериллий в концентрации 0,002 мг/л. Уран в расплавленных солях флуоресцирует, присутствуя в чрезвычайно малых количествах. Так можно открыть 10 " г урана (см. Уран , стр. 1066). [c.296]

    Ряд реактивов, первоначально описанных для качественного открытия алюминия, затем был предложен и для его количественного определения (в их числе и З-окси-2-нафтойная кислота, позволяющая путем капельной реакции открывать 0,0002 мкг А1) [158]. Такие реактивы сведены в табл. IV-2. Морин применен для определения алюминия в воде [367]. При использовании 8-оксихинальдина для анализа окиси тория влияние мешающих элементов устраняют путем экстракции теноилтрифтора-цетоном и введения соответствующих комплексообразователей [228]. Известная флуоресцентная реакция алюминия с 8-оксихи-нолином применена для его прямого определения в воде [288], в бронзе [229], в вольфраме и его окислах [204], в металлических магнии [151] и уране [152], в солях висмута (после удаления последнего электролизом на ртутном катоде) [153] и в реактивных кислотах [320]. Реакция с понтахром сине-черным Р (эриохром сине-черным В) [360] использована при анализе сталей, бронз и минералов [355], морской воды [337], сульфида цинка (то же, после отделения мешающих примесей электролизом на ртутном катоде) [204], металлических магния [257, 259], германия [119] и сурьмы [123]. Отмечено применение для тех же целей понтахром фиолетового SW [327]. Салицилал-2-аминофенол, предложенный ранее для качественных целей [242], был использован для анализа реактивов высокой степени чистоты [35, 36, 76]. Указанная в табл. IV-2 чувствительность достигнута при условии тщательной очистки используемых буферных растворов. Для устранения помех со стороны больших количеств железа при анализе сталей предложено осаждать его избытком едкого натра в присутствии пергидроля [295], а при анализе силикатов — восстанавливать до двухвалентного состояния с последующей маскировкой 2,2 -дипиридилом [354] в обоих случаях определение алюминия производят путем его фотометри-рования в виде 8-оксихинолината. [c.143]


    Фторид-иопы с трудом дают окрашенные соединения и в то же время склонны образовывать с различными металлами стабильные неокрашенные комплексы, которые в свою очередь способны давать с другими лигандами окрашенные комплексы. Так, например, при добавлении раствора, содержащего фторид-ион, к раствору окрашенных комплексов, образованных много-зарядными ионами [цирконий, лантан, торий, железо(П1), титан (IV), уран(VI) и т. д.] с органическими или неорганическими лигандами (ализаринат, хлоранилат, родизонат, тиоцианат и другие ионы), окраска раствора становится менее интенсивной или полностью исчезает в зависимости от концентрации фторид-ионов. Под влиянием фторид-ионов увеличивается чувствительность реакций тушеиия флуоресценции комплексов алюминия с морином, кверцетином и 8-оксихинолином. При использовании окрашенных лигандов в присутствии фторид-ионов окраска комплекса изменяется, а не обесцвечивается. Некоторые окрашенные комплексы, например, с таким лигандом, как хлоранилат, хотя и нерастворимы в воде, но в виде суспензии титруются фторид-ионами. Фторид-иопы связываются ионами металла в комплекс, и фильтрат приобретает окраску лиганда. [c.62]


Смотреть страницы где упоминается термин Морин урана: [c.184]    [c.125]    [c.365]    [c.824]    [c.830]   
Фотометрическое определение элементов (1971) -- [ c.423 ]

Колориметрические методы определения следов металлов (1964) -- [ c.823 , c.824 ]




ПОИСК





Смотрите так же термины и статьи:

Морин



© 2025 chem21.info Реклама на сайте