Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ химический растворы стандартные

    Потенциометрия. Потенциометр ней называется физико-химический состав исследования и электрохимический метод инструментального анализа, основанный на зависимости электродного потенциала или ЭДС элемента от состава раствора. Потенциометрия применяется для определения термодинамических характеристик реакций, стандартных электродных потенциалов, активности и коэффициентов активности электролитов, водородного показателя, концентраций растворов (потенциометрическое титрование) и т. д. [c.296]


    К собственно химическим методам исследования относятся синтез минералов и являющихся продуктами процесса соединений, изучение их состава и поведения в разных условиях при взаимодействии с теми или иными реагентами, а также фазовый химический анализ изучаемых продуктов. Обычно химические методы не используются изолированно, а сочетаются с физико-химическими и все чаще—физическими методами. Даже простая операция количественного определения pH или Ен раствора основана на применении потенциометрии — физико-химического метода. Да и определение качественного и количественного состава вещества проводят не только химико-аналитическими методами, а с широким использованием физических и физико-химических методов анализа (эмиссионного и атомно-абсорбционного спектрального, рентгеноспектрального, активационного и др.). Для обеспечения правильности результатов анализа применяют стандартные образцы веществ и материалов, состав которых установлен на основе комплексного использования химических и различных инструментальных методов. [c.199]

    В 1852 г немецкий фармацевт Карл Мор предложил использовать двойной сульфат железа(П)-аммония для приготовления стандартных растворов, используемых в химическом анализе Соль оказалась такой удобной, что вскоре ее стали называть только соль Мора — и не ина че Это соединение входит в группу двойных солей шенитов Что это та кое Какова формула соли Мора  [c.253]

    Стандартные образцы — эталоны для различных методов анализа С. о. представляют собой различные материалы, химический состав которых точно известен. Напр., эталоны сталей для спектрального анализа, содержащие небольшие количества примесей легирующих металлов никеля, марганца, хрома идр. С. о. применяют при контроле химического состава сырья (руд, огнеупоров, концентратов и др.), полупродуктов и продукции машиностроительной и металлургической промышленности на содержание тех или иных компонентов. Стандартные (титрованные) растворы — растворы с точно известной концентрацией реактива. С, р, представляют основные рабочие растворы во всех методах титриметрического анализа — количественного определения вещества, основанного на измерении объемов растворов, затраченных на реакцию (титрование). Стандартный электродный потенциал (нормальный электродный потенциал) — потенциал электрода в растворе, в котором ионы, определяющие электродны [c.126]

    Первичным стандартным раствором называют раствор, приготовленный по точной навеске специального вещества — первичного стандарта. Стандартами называют вещества, состав которых точно соответствует химической формуле. В качестве первичных стандартов может быть использовано ограниченное число веществ, которые легко очищаются от примесей (содержат примеси не более 0,05% по массе), устойчивы на воздухе и в растворе по отношению к кислороду и углекислому газу, не гигроскопичны и не гидролизуются. Для этих целей обычно используют препараты марки х.ч. ( химически чистый ) или ч.д.а. ( чистый для анализа ) после высушивания или прокаливания. [c.589]


    При массовых фотоколориметрических анализах не сравнивают каждый раз светопоглощение испытуемого раствора со светопогло-щением эталонного раствора. Определение концентрации анализируемого раствора производится с помощью так называемой калибровочной кривой, которая выражает зависимость оптической плотности раствора исследуемого вещества от концентрации. Для построения калибровочной кривой готовят серию эталонных растворов, имеющих различные известные концентрации определяемого вещества. Эталонные растворы можно готовить из соответствующих химических соединений марки х. ч. или из стандартных образцов соответствующих материалов (например, солей, чугунов, сталей, бронз, руД и т. д.). В качестве стандартных образцов для приготовления эталонных растворов используют специальные стандартные образцы для химического и спектрального анализа, выпускаемые Уральским институтом металлов. [c.288]

    Теплоту сгорания определяют как такое количество теплоты, которое выделяется при взаимодействии одного грамм-моля соединения с избытком кислорода нрп атмосферном давлении и комнатной температуре, причем продукты находятся в их естественном состоянии ири указанных условиях. Следует подчеркнуть, что химический анализ является существенной частью всех термохимических исследований. Наиример, хлористый метил легко сгорает в воздухе, давая углекислый газ, жидкуюводу и газообразный хлористый водород, который растворяется в воде с образованием соляной кислоты. Кроме того, образуется 6,5% свободного хлора необходимо так ке учитывать тот факт, что на опыте очень трудно приготовить хлористый метил без примеси диметилового эфира. Йодистый метил загорается на воздухе ярким пламенем, но ипамя вскоре гаснет, еслн не подается воздух, обогащенный кислородом при этом иодистого водорода не образуется и весь иод в продуктах реакции обнаруживается в кристаллическом состоянии. Чтобы дать правильное объяснение термическим эффектам, сопровождающим эти реакции сгорапия, надо иметь возможность совершенно точно сопоставлять кало-рпметричес1ше результаты с происходящими при этом химическими изменениями и такими физическими процессами, как растворение НС1 в воде и сублимация иода. Огромной заслугой Томсена [9] и Бертло [10] было то, что еще в прошлом веке они точно определили теплоты образования и сгорания многих тысяч химических соединений, а также нашли теплоты процессов растворения, нейтрализации и разведения. Работая независимо и пользуясь различной аппаратурой, они достигли результатов, находящихся в замечательном взаимном соответствии. Их данные лишь с некоторыми небольшими иоправками [И] до сих пор можно исиользовать как стандартные значения термохимических величин. [c.257]

    Массовыми стандартными анализами такого рода, однако, отнюдь не ограничиваются значение и возможности сочетания газовой экстракции и хроматографии. Недавно было указано на интересные новые перспективы, которые открывает АРП при исследовании химических равновесий в растворах. Если в равновесии участвуют летучие реагенты (или продукты), то анализ равновесного пара позволяет определять константы равновесия в сложных смесях без выделения их компонентов. Так, например, возможно определение констант [c.9]

    В связи с анализом ультрачистых веществ п биологических объектов большое внимание уделяется и анализу растворов, полученных после соответствующей химической обработки анализируемых проб. Спектральный анализ растворов исключает ошибки, связанные с влиянием структуры, тепловой истории образца и с неравномерным распределением в нем элементов. Устраняется также фракционирование элементов, уменьшается влияние матрицы и третьих элементов на результаты анализа. Например, основа не влияет на точность спектрального определения Мп, Сг, N1 в стандартных образцах стали, бронзы и шлака (растворы шлака анализировали без кремневой кислоты) [440]. Сравнительно просто решается вопрос о приготовлении стандартов. Из существующих методов спектрального анализа растворов наибольшей абсолютной чувствительностью обладает метод сухого остатка с применением импрегнированных угольных электродов [48, 182]. [c.75]

    В книге на современном уровне кратко изложены теоретические основы гравиметрии и титриметрии - образование и свойства осадков, типы химических равновесий в гомогенных и гетерогенных растворах описаны кривые титрования проанализированы ошибки в кислотно-основном, осацительном, комплексимет-рическом и окислительно-восстановительном титровании. Подробно рассмотрены аппаратура и техника проведения всех операций в количественном химическом анализе. Все расчеты проведены с учетом новых данных о величинах констант, стандартных потенциалов и т.п. [c.2]

    Очевидно, чем больше различаются между собой стандартные потенциалы обоих электродов, тем выше будет эдс элемента. Однако в электрохимических системах с высокой эдс часто наблюдается самопроизвольное химическое взаимодействие веществ электродов с компонентами электролита. Рациональный выбор электрохимических пар электродов весьма ограничен и определяется анализом всех свойств материалов электродов. Например, несмотря на весьма отрицательный потенциал, литиевый электрод практически трудно использовать в водных растворах из-за бурного взаимодействия лития с водой, а калий в таких растворах даже взрывается. [c.19]


    Проведенные исследования показали, что результаты анализа химических реактивов, проводимого атомно-абсорбционным методом, практически не зависят от состава анализируемых образцов и, следовательно, стандартные растворы, необходимые для калибровки используемой аппаратуры, могут готовиться на чистых растворителях. Независимость результатов анализа от химического состава пробы является важным преимуществом атомно-абсорбционных методов перед эмиссионными методами спектрального анализа, поскольку в последних получение правильных результатов в большинстве случаев возможно лишь при использовании стандартов, приготовленных на образцах того же состава, спектрально чистых по определяемому элементу. [c.148]

    В нашей стране обобщающая монография по термодинамике нефтехимических процессов издана в 1960 г. (А. А. Введенский. Термодинамические расчеты нефтехимических процессов. ГОНТИ, Л., 1960, 576 с.). Эта превосходно написанная для своего времени книга в определенной степени устарела по следующим причинам. Ее значительная часть посвящена анализу разрабатывавшихся в 50-е годы методов определения стандартных термодинамических функций, которые сейчас практически не используются. Конкретный термодинамический анализ выполнен для тех реакций, которые получили промышленное применение в 30-е —50-е годы. Практически нет данных о химических равновесиях в системах с несколькими фазами, о равновесиях в растворах. Основная конкретная информация относится к простым реакциям. [c.6]

    Метод градуировочного графика. Условием применения этого метода является точная информация о качественном составе проб, чтобы была возможность максимально приблизить химический состав эталонных растворов к составу растворов образцов. Эталонные растворы готовят из стандартных растворов разбавлением. Во время фо-тометрирования необходимо следить за посгоянством параметров фотометра, расходов горючего газа и сжатого воздуха. Измерения повторяют несколько раз. Градуировочный график строят в координатах сила фототока (мкА) — концентрация элемента в растворе с (мкг/мл) (рис. 6). Единовременно с растворами эталонов фотометри-руют растворы образцов и, используя градуировочный график, определяют неизвестную концентрацию. Этот способ целесообразно применять при анализе большого количества образцов. [c.15]

    Определение содержания отдельных компонентов во многих методах химического анализа опосредовано через применение разного рода стандартных образцов или эталонов . Таковы методы фотометрического, эмиссионного, спектрального, атомно-абсорбционного, газохроматографического анализов, полярографические, амперометрические, кондуктометрические, радиохимические и многие другие методы. В титриметрических методах получили распространение фиксаналы, которые по сути дела являются стандартами для приготовления рабочих растворов. [c.51]

    Прямой кондуктометрический метод анализа основан на зависимости проводимости от концентрации. Строят для стандартных растворов электролита градуировочный график зависимости проводимости от концентрации. Затем измеряют проводимость анализируемого раствора и по графику находят его концентрацию. Несмотря на высокую точность и простоту измерений, прямой кондуктометрический метод анализа не нашел широкого применения в практике аналитических лабораторий. Это связано, с тем, что метод не селективен. Согласно уравнению (6.5) измеряемая проводимость определяется концентрацией и скоростью движения всех ионов, присутствующих в растворе. Примеси посторонних электролитов значительно изменяют значение проводимости и искажают результаты анализа. Недостаток метода состоит также в сложности зависимости удельной проводимости от концентрации с ростом концентрации проводимость вначале увеличивается, а при высоких концентрациях (3—5 М) уменьшается. Метод применяется для автоматизации контроля в различных непрерывных химических производствах при анализе растворов, концентрация которых изменяется незначительно. [c.90]

    Парофазный анализ растворов полимеров, как правило, проводили в автоматических анализаторах фирмы Перкин — Элмер методами абсолютной калибровки или внутреннего стандарта, причем относительная ошибка составляла 2—4% [79]. В качестве внутренних стандартов используются вещества, близкие по химической природе к анализируемым примесям (бутилбензол, эфир и др.). Растворы для абсолютной калибровки следует готовить с добавкой соответствующего полимера, поскольку при рабочих концентрациях полимеров (порядка 10%) присутствие их в растворе существенно влияет на коэффициент распределения примесей. При отсутствии образцов чистых полимеров, необходимых для приготовления стандартных растворов, рекомендовалось использовать метод добавки известного количества определяемой примеси к раствору анализируемого полимера [82]. [c.141]

    Стандартные образцы цвета можно классифицировать в соответствии с их возможным назначением. Обычный образец, используемый для определения цвета поставляемой краски, совсем не имеет универсальности. Он годен лишь для одного цвета и очень часто для одного конкретного заказа. Тысячи таких образцов, выбираемых ежегодно, достаточно хорошо служат своему назначению, и в расчет их брать не следует. Затем имеются ограниченные ряды образцов цвета, представляющих изменение цвета в одном направлении. В повседневной практике используются сотни таких образцов цвета, иногда называемых цветовыми шкалами. В качестве типичного примера можно привести используемые в химических анализах ряды растворов, каждый из которых содержит различные концентрации одного и того же красящего вещества. Другим важным примером может служить набор стеклянных оЙ1разцов, дублирующих такой ряд цветов. Шкалы для сортировки нефтепродуктов по цвету, растворы сахара или смолы, которые представляют цвета, соответствующие различным степеням очистки или чистоты, представляют собой другие примеры. Такие ряды стандартных образцов, проявляющих изменения цвета в одном направлении, являются более важными в применении, так как они представляют серию цветов, а не один-единственный цвет. И в заключение можно сказать о наборах стандартных образцов, предназначенных для охвата значительной части всех цветов. Из такой совокупности для любого цвета в пределах цветового охвата можно подобрать достаточно близкий цвет. Эти наборы получили также широкое распространение в промышленности, но наиболее ценные из них можно буквально пересчитать по пальцам. Так как цвет сам по себе является трехмерной величиной, то такие наборы обязательно должны представлять трехмерное изменение, чтобы обеспечить адекватный отбор цветов, представленных рассматриваемой области цветового тела. [c.280]

    Константы равновесия гомогенных и гетерогенных систем обычно определяют путем непосредственного анализа химического состава с помощью различных методов, от которых требуется, чтобы в процессе анализа положение равновесия не изменялось. Из найденных такид образом значений К при различных температурах, определяют стандартные изменения свободной энергии, энтальпии и энтропии по уравнениям (2.7), (2.9) и (2.10) соответственно. Рассмотрим несколько примеров реакций в растворах. [c.42]

    Дело в том, что каждый процесс анализа условно делится на ряд основных стадий подготовка образцов к анализу разделение составляющих измерение с помощью специального метода сигнала, отвечающего отдельным составляющим вычисление состава анализируемого образца. Обычно не все эти стадии анализа удается автоматизировать полностью. Например, современные спектрофотометры автоматически измеряют поглощающую способность до пятидесяти образцов, поступающих в кювету. Отсчеты поглощающей способности автоматически поступают на встроенный в прибор цифровой индикатор и печатаются на электронной пишущей машинке. Однако две ступени анализа все-таки ограничивают возможности полной автоматизации чтобы подготовить стандартные растворы для спектрофотометрии, несколько химических операций должен выполнить сам аналитик участие человека необходимо также для интерпретации полученных цифровых данных. [c.336]

    Так, например, по электропроводности раствора соляной кислоты можно непосредственно рассчитать ее концентрацию. Такой метод называется кондуктометрией. Измерить электропроводность можно не проводя химических реакций поэтому кондуктометрия относится к физическим методам. Однако подобные методы обычно пригодны лишь для анализа стандартной продукции, когда качественный состав материалов не изменяется. Если же в растворе наряду с НС1 появится, например, хлористый натрий, то определение кислотности на основании электропроводности приведет к неправильным результатам. Используя ту же аппаратуру для измерения электропроводности, можно сделать определение более избирательным, устранив влияние хлористого [c.6]

    Всесоюзный научно-исследовательский институт стандартных образцов и другие институты выпускают спектральные эталоны только наиболее часто встречающихся марок сталей и сплавов. Для анализа горных пород, руд, минералов и т. п. в лабораториях спектрального анализа готовят из окислов металлов искусственные смеси, близкие по химическому составу к анализируемым пробам. Гораздо проще приготовлять эталонные растворы, которые вводят в дуговой или искровой промежуток в виде аэрозолей, тонкой пленки или же сухого остатка. [c.171]

    Расчет активности и дисперсионный анализ при использовании трехдозного варианта метода диффузии в агар осуществляется в соответствии со статьей Статистическая обработка результатов химического эксперимента и биологических испытаний (ГФ XI, вып. I, с. 199). В разделе 11.5 данной статьи растворы определенных концентраций стандартного (С) и испытуемого (И) образцов обозначены О и соответственно. [c.214]

    Гравиметрия является длительным методом, так как включает такие продолжительные операции, как фильтрование, промывание, высушивание, прокаливание и доведение осадка до постоянной массы. Часто приходится пере-осаждать осадок для удаления соосадившихся элементов. В большинстве случаев результаты анализа можно получить через несколько часов, в сложных случаях — на вторые или третьи сутки. По этой причине гравиметрии не применяют для ускоренных (экспрессных) анализов, позволяющих наблюдать за ходом технологических процессов. Однако ее часто используют при выполнении высокоточных маркировочных и арбитражных анализов на предприятиях. Нередко роль гравиметрического анализа сводится к контролю результатов, полученных другими, более ускоренными инструментальными методами. Гравиметрия используется для установления химического состава стандартных образцов, титров растворов, анализа товарных продуктов. [c.26]

    В системах, содержаишх равновесные растворы, наблюдаемая электродвижущая сила, измеренная с помощью, например, потенциометра, определяющаяся молярными или парциальными молярными свободными энергиями веществ, участвующих в равновесии, оказывается (см, гл- VI) связанной определенным образом с их активностями. Наоборот, связь между активностью и концентрациями не может быть установлена термодинамически и должна быть определена хШическим анализом равновесной системы. В некоторых простых случаях можно обойтись без химического анализа и выразить активности непосредственно через концентрации. Множитель, связывающий концентрацию компонента с его активностью, называют. коэфициентом активности . Численное значение коэфициента активности будет зависеть от применяемых единиц концентрации и от выбора стандартного состояния. Для неводных растворов стандартные состояния растворенного вещества и растворителя выбираются обычно так, чтобы в бесконечно разбавленном растворе активность каждого компонента становилась равной его молярной доле, а коэфициент активности — единице. Удобной мерой активности растворителя, создающего над раствором измеримое давление пара, является отношение этого давления к давлению пара чистого растворителя. [c.71]

    Конкретные методы определения концевых групп зависят от химических свойств индивидуальной группы. Следует различать прямые методы анализа концевых групп и косвенные, когда концевые группы предварительно переводят в форму, более удобную для анализа. К первым относится большинство методов анализа полиэфиров и полиамидов. В своих первых работах по полиэфирам Карозерс и другие авторы применяли титрование кислотных концевых групп [18, 19, 45]. Так, полиэфиры, полученные из 3-оксндекановой кислоты, титровали в спиртово-хлороформных растворах стандартным спиртовым раствором едкого кали. Карозерс и Ван-Натта [19] получали надежные результаты вплоть до молекулярных весов порядка 25 ООО. Этот метод оказался очень полезным для исследования кинетики полиэтерификации, как было показано Флори [24, 25], а также для установления зависимости между молекулярным весом и вязкостью. Такое исследование полиэфиров и-оксиундекановой кислоты провели Бейкер, Фуллер и Хейес [3], [c.369]

    Среди требований, которые необходимо учитывать при анализе природных объектов на содержание токсичных металлов с помощ1.ю I-fflA, прежде всего следует указать на особенности отбора проб и их подготовки 69]. Все реагенты, стандартные растворы и т.п. должны иметь исключительно высокую чистоту и не содержать следов определяемых элементов. Химическая посуда также должна быть тщательно подготов.чена. Образцы морской или речной воды следует отбирать с резиновой лодки, в противном случае возможно загрязнение проб следами металлов от работающего двигателя или антикоррозионного покрьггия днища катера. Воду отбирают в полиэтиленовые или тефлоновые емкости, предваритс льно подготовленные для этих целей. [c.279]

    Метод основан на измерении объема стандартного раствора— титранта, необходимого для проведения реакции с определенным компонентом. Конечную точку титрирования фиксируют по изменению окраски раствора или специального индикатора визуально или с помощью какого-либо инструментального метода применительно к газовому анализу. Титриметрический метод предполагает выделение в конденсированную фазу определяемого компонента или какого-либо его соединения, в которое он предварительно превращается. Для этого используются как химические реакции, так и процессы химической абсорбции. В аналитическом процессе используются различные приемы титрования — прямое и обратное, метод замещения и др, [c.919]

    В физико-химических методах анализа часто используется градуировочный график в координатах свойство - концентрация определяемого вещества. При расчете концентрации стандартных растворов (г/мл) учитывают все производимые разбанления  [c.127]

    Методы определения различных физико-химических величин и количественного анализа растворов на основе измерения ЭДС получили общее название потенциометрни. В потенциометрии широко используется измерение потенциала исследуемого электрода относительно какого-либо электрода сравнения (см. с. 20). Потенциалы выражаются в шкалах либо выбранного электрода сравнения (последний обязательно должен указываться), либо пересчитываются в водородную шкалу, которая отвечает стандартному (нормальному) водородному электроду сравнения [Р1, На ( = 1 атм = 101,325 кПа), Н+ (а = 1)1. Для стандартного (нормального) водородного электрода будет использоваться принятое в нашей стране сокращенное обозначение н. в. э. [c.108]

    К методам приведения относится и так называемый -метод де Бура [167], получивший наибольшее распространение. Этот метод, как будет показано далее, представляет особый интерес при исследовании адсорбции из водных растворов, и к его более детальному анализу в этой связи мы еще должны будем вернуться. Для определения удельной поверхности адсорбентов по этому методу также пользуются стандартным адсорбентом с известной поверхностью. При исследовании адсорбции на углеродных материалах в качестве стандарта выбирают непористую сажу. Изотермы адсорбции стандартного адсорбата (азота) на обоих адсорбентах выражают в виде зависимости объема адсорбированного вещества 1>а от равновесного относительного давления. При этом плотность адсорбированного вещества принимают равной плотности его в жидком состоянии при той же температуре (как это впервые было допущено Поляни). Поскольку поверхность непорпстого стандартного адсорбента известна, то из величин адсорбированного объема вещества можно рассчитать среднюю статистическую толщину адсорбционного слоя I и представить ее как функцию plps В -методе допускается, что на адсорбенте с неизвестной удельной поверхностью одинаковой химической природы средняя статистическая толщина адсорбционного слоя при равных р р такова же, как и на адсорбенте с известной поверхностью. Это условие справедливо при приблизительном равенстве энергетических характеристик адсорбентов. Для всех таких адсорбентов должна существовать единая кривая = / (р/р.ч), что и подтвернадается большим количеством экспериментальных измерений [141, 142]. [c.71]

    Чтобы уменьшить отклонения от закона Бера, необходимо рабо-гать в оптимальных условиях, выбрав подходящий реагент и способ приготовления испытуемого и стандартного растворов. На величину светопоглощения влияет температура, вызывающая изменение химического состава светопоглощающего вещества. Раствор должен содержать вещество, обладающее собственной характерной окраской, или образовывать окрашенные соединения с соответствующими реагентами. Окраска раствора должна быть достаточно интенсивной, и чем она интенсивнее, тем чувствительнее метод анализа. [c.459]

    Кулонометрия объединяет методы анализа, основанные на измерении количества электричества, израсходованного в ходе электродной реакции. Последняя приводит к количественному окислению или восстановлению титруемого вещества или же к получению промежуточного код1Нонента, стехиометрически реагирующего с определяемым соединением. Кулонометрический анализ обладает рядом существенных преимуществ по сравнению с другими физико-химическими методами анализа (надежное определение чрезвычайно малых концентраций, легкость автоматизации, возможность использования неустойчивых реагентов, исключение стандартных растворов). За свою немногим более чем двадцатилетнюю историю он стал не только одним из важнейших методов электроаналитической химии, но и надежным средством изучения различных физико-химических процессов. Основным достоинством кулонометрии является возможность анализа без предварительной калибровки прибора по образцам с известным содержанием определяемого компонента (разумеется, при наличии разработанной методики). Между тем, необходимость приготовления калибровочных графиков и даже частая проверка последних присущи почти всем современным физико-химическим методам анализа, в том числе важнейшим из них — оптическим, хроматографическим и полярографическим. [c.3]

    Индикаторные ошибки. Даже при правильно выбранном индикаторе не исключается ошибка в анализе. При использовании, индикаторов могут быть ошибки трех видов. Первая, имеющая наибольшее значение,— химическая ошибка. Она возникает из-за того, что индикатор, как правило, не изменяет окраски в точке эквивалентности. Чтобы исключить или уменьшить хршическую ошибку, нужно правильно выбрать соответствующий индикатор. Ошибка из-за неправильно подобранного индикатора может достигать очень большой величины. Для избежания очень грубых ошибок нельзя применять при титровании кислот индикаторы с рТ>10, а при титровании оснований индикаторы с рТ<4. Важное значение имеет и выбранная концентрация титруемого и стандартного растворов. Не следует применять очень разбавленные растворы. Как правило, не оправдано применение 0,01 М растворов из-за уменьшения скачка титрования и постепенного [c.276]

    Построение калибровочного графика. Для анализа проб, содержащих 0,0005— 0,02% меди. В шесть химических стаканов помещают по 0,5 г высокочистого титана и растворяют металл в смеси 25 мл серной и 0,5 мл борофтористоводородной кислот, осторожно нагревая раствор для ускорения растворения. Раствор в каждом стакане окисляют небольшим избытком концентрированной азотной кислоты, добавляя ее по каплям, и осторожно кипятят для удаления окислов азота. Охлаждают раствор и добавляют в пять стаканов 1,0 2,0 3,0 4,0 и 5,0 мл стандартного раствора меди. [c.45]

    В многочисленных химических анализах конечным продуктом реакции является цветной раствор. Наиболее важное значение для промышленности имеет метод определения кислотности или щелочности (pH) раствора с помощью красителя, служащего индикатором. С этой целью широко используются стеклянные стандартные образцы цвета вместе с 18 индикаторами, охватывающие диапазон pH от 0,2 до 13,6 и выпускаемые фирмой Хеллиг . Кроме таких химических анализов, имеется несколько тестов, важных с точки зрения торговли, которые требуют использования одномерной цветовой шкалы, составленной на основе светоотражающих образцов. [c.317]

    Это положение относится не только к измерениям в последней стадии анализа, но ко всему методу в целом. Так, например, спектральный анализ какого-либо материала не может быть более точным, чем тот химический метод, которым устанавливалось содержание данного компонента в соответствующих стандартных образцах. Самыеточные приемы определения содержания компонентов в пятнах после распределительной (бумажной) хроматографии не могут исправить ошибку, связанную с нанесением очень малого объема испытуемого раствора в самом начале анализа. В частности, если вначале было нанесено на бумажную полоску 0,008 0,001 мл исходного анализируемого раствора, то бесполезно выражать окончательный результат цифрами, например 35,2% первого компонента, 9,75% второго и т. д. [c.40]

    Флуориметрический метод определения мик опримесей. Метод состоит в подготовке вещества к анализу и оценке интенсивности излучения. Вследствие высокой чувствительности метода необходимо применять реагенты особой чистоты или химически чистые. Во многих случаях реагенты дополнительно очищают перекристаллизацией, перегонкой, экстракцией, хроматографией. Хранить высокочистые вещества рекомендуется в посуде из полиэтилена или кварца. Особое. внимание должно быть обращено на качество применяемой воды. В дважды дистиллированной воде, полученной -в кварцевом перегонном аппарате, содержание примесей снижается до 10 —10" %. Во многих случаях для люминесцентного анализа вполне достаточно визуального сравнения интенсивности и цвета излучения при возбуждении ультрафиолетовым светом. Сравнивают интенсивность излучения анализируемого раствора с набором стандартных растворов. Для этого готовят раствор исследуемой пробы и серию стандартных растворов с известным содержанием определяемой примеси. Во все растворы добавляют соответствующие реагенты и по истечении времени, необходимого для образования люминесцирующего соединения, сравнивают интенсивность люминесценции анализируемого раствора с эталонными растворами и таким образом находят содержание примеси в анализируемой пробе. Содержание примеси л в процентах рассчитывают по формуле [c.64]


Смотреть страницы где упоминается термин Анализ химический растворы стандартные: [c.231]    [c.137]    [c.263]    [c.27]    [c.16]    [c.279]    [c.102]    [c.254]    [c.236]    [c.247]    [c.198]   
Химия кремнезема Ч.1 (1982) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ химический

Растворы анализ

Стандартные растворы

Химический ая ое раствора

Химический ая стандартный



© 2025 chem21.info Реклама на сайте