Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молибден как легирующий элемент

    Легированные стали маркируют буквами и цифрами. Двузначные цифры в начале марки указывают среднее содержание углерода в сотых долях процента, буквы справа от цифры — легирующие элементы А — азот, Б — ниобий, В — вольфрам, Г — марганец, Д — медь, Е — селен, К — кобальт, М — молибден, Н — никель, П — фосфор, Р — бор, С — кремний, Т — титан, Ф — ванадий, X — хром, Ц — цирконий, Ю — алюминий. Цифры после букв указывают ориентировочное содержание легирующего элемента в целых процентах отсутствие цифры свидетельствует о том, что элемент присутствует в количестве не более 1,5%. [c.328]


    Коррозионную стойкость сталей, а также их длительную прочность повышают добавлением ири плавке легирующих элементов. В качестве легирующих элементов применяют хром, никель, молибден, титан и т. д. Наличие их в стали в различных сочетаниях и количествах позволяет придать ей требуемые физи-ко-механические свойства, в том числе высокую сопротивляемость коррозии в агрессивных средах при различных температурах. [c.22]

    В легированных сталях дополнительно определяют никель, хром, ванадии, вольфрам, молибден, алюминий, медь и другие легирующие элементы. При анализах руководствуются стандартами на методы химического анализа металлов и сплавов. [c.204]

    Основным легирующим элементом, повышающим стойкость металла к коррозии, является хром. При нормальных условиях его присутствие придает металлу стойкость к коррозии от влаги. При повышенных температурах хром придает металлу стойкость к коррозии, вызываемой газовыми агрессивными потоками. Она имеет место в трубах печей, реакторах, теплообменниках нагрева сырья со стороны газопродуктового потока. С ростом содержания хрома стойкость к коррозии увеличивается особой стойкостью обладают хромоникелевые сплавы. Из других добавок очень хорошо проявляет себя молибден. Однако характерным недостатком хромоникелевых сплавов является их склонность к межкристаллит-ной коррозии, при которой процесс разрушения развивается не на поверхности, а по границам кристаллов. Теория это объясняет образованием карбидов хрома при длительном нафевании сплавов выше 350°С. При этом участки, прилегающие к границам зерен или кристаллов, обедняются хромом и теряют свою коррозионную стойкость. Наиболее уязвимы для межкристаллитной коррозии сварные швы. [c.169]

    Легированные стали. Элементы, специально вводимые в сталь в определенных концентрациях для изменения ее свойств, называются легирующими элементами, а сталь, содержащая такие элементы, называется легированной ста-.лъю. К важнейшим легирующим элементам относятся хром, никель, марганец, кремний, ванадий, молибден. [c.628]

    Сталь, содержащая специально введенные элементы, называется легированной сталью, а сами элементы — легирующими элементами. К легирующим элементам, наиболее эффективно изменяющим свойства стали, относят ванадий, вольфрам, молибден, хром, марганец, никель и др. [c.395]

    Большое значение в современной технике имеют легированные стали. Они содержат так называемые легирующие элементы, к которым относятся хром, никель, молибден, ванадий, вольфрам, марганец, медь, кремний и др. Легирующие элементы добавляются для придания стали определенных свойств. Так, х р о м о н и к е л е- [c.264]


    Большое значение в современной технике имеют легированные стали. Они содержат в своем составе так называемые легирующие элементы, к которым относятся хром, никель, молибден, ванадий, вольфрам, марганец, медь, кремний и др. [c.314]

    Легированным называется чугун, в котором кремния и марганца содержится выше указанных пределов или имеются специально введенные легирующие элементы хром, никель, молибден и др. [c.117]

    Присутствие бора в переходной зоне, обогащенной углеродом, и другие факторы приводят к значительному росту зерна в этой зоне. Карбидообразующие элементы (хром, вольфрам, молибден) в значительной мере устраняют это явление. Однако присутствие этих элементов (а также ванадия) способствует сглаживанию зубчатого контура в нижней части слоя, что ухудшает сцепление. Легирующие элементы, сужающие -у-область (хром, титан, ванадий), препятствуют диффузии бора и существенно уменьшают глубину борированного слоя. [c.42]

    В процессе борирования происходит перераспределение легирующих элементов между слоем и основным металлом. Углерод, хром, вольфрам и молибден диффундируют из слоя в основной металл, а никель, марганец и кремний обогащают борированный слой, мигрируя из основного металла к слою. Встречный поток атомов кремния и углерода приводит к обогащению ими переходной зоны от боридов к металлу. [c.43]

    Для повышения сопротивления КР малоуглеродистые стали легируют элементами, связывающими углерод и азот в соединения, нерастворимые в феррите и аустените. К таким элементам относится титан, введение которого весьма заметно увеличивает стойкость к КР. Легирование сталей хромом, молибденом, алюминием, марганцем и ванадием тоже повышает сопротивление КР. Увеличение содержания фосфора снижает стойкость мягких сталей к КР. [c.69]

    Легирующие элементы низколегированных сталей при почвенной коррозии уменьшают начальную скорость образования коррозионных язв. Максимальная глубина язв также меньше, чем в нелегированных сталях. Хром и молибден повышают коррозионную устойчивость легированных сталей при наличии коллоидов. Из низколегированных сталей изготавливают конструкции для сооружений, находящихся в агрессивных почвах. [c.91]

    Основными легирующими элементами стали являются хром, никель, молибден, вольфрам, ванадий, титан, алюминий, марганец, кремний, бор. Неизбежными примесями в сталях являются марганец, кремний, фосфор, сера. Легирующие элементы, вводимые в углеродистую сталь, изменяют состав, строение, дисперсность и количество структурных составляющих и фаз. Фазами легированной стали могут быть твердые растворы — легированный феррит и аустенит, специальные карбиды и нитриды, интерметаллиды, неметаллические включения — окислы, сульфиды, нитриды. Как правило, за счет легирования повышаются прочностные характеристики стали (пределы прочности и текучести). [c.66]

    Легированные стали. Для улучшения физических, механических, химических и технологических свойств сталей в их состав вводятся легирующие элементы, такие как никель, хром, марганец, молибден, титан и др. [c.10]

    В обозначении марки стали первые цифры указывают среднее содержание углерода в сотых долях процента. Буквы за цифрами обозначают С — кремний, Г—марганец, X — хром, Н — никель, Т — титан, В — вольфрам, М — молибден, Ю — алюминий, Р — бор, Ц — цирконий, К — кобальт, Д — медь, Б — ниобий, Ф — ванадий и т. д. Цифры, стоящие после буквенного обозначения легирующего элемента, указывают примерное содержание соответствующего элемента в процентах при содержании элемента до 1,5 процента цифра не ставится. Марки высококачественной стали имеют в конце букву А. [c.10]

    По принятой в СССР классификации марка стали дает возможность определить ее химический состав. Две первые цифры слева показывают количество углерода в сотых процента, а следующие за ними буквы обозначают Г — марганец, С — кремний, X — хром, Н — никель, М — молибден, В — вольфрам, Ф — ванадий, Т—титан, Нб — ниобий, Ю — алюминий. После каждой буквы, обозначающей легирующий элемент, ставится одна или две цифры, указывающие среднее процентное содержание этого элемента в целых единицах (цифры один и меньше опускаются). [c.344]

    Ваипднй 15 основном используют в качестве добавки к сталям. Сталь, содергкащая всего 0,1—0,3% ванадия, отличается большой прочностью, упругостью и нечувствительностью к толчкам и ударам, что особенно важно, например, для автомобильных осей, которые все время подвергаются сотрясению. Как правило, ванадий вводят в сталь в комбинации с другими легирующими элементами хромом, никелем, вольфрамом, молибденом. Наиболее широкое применение ванадий нашел в производстве инструментальных и конструкцио.чных сталей (стр. 686). Он применяется также для легирования чугуна. [c.652]

    Коррозионная стойкость хромоникельмолибденомедистых сталей в некоторых агрессивных средах, в особенности в растворах серной кислоты средних концентраций при повышенной температуре, вплоть до 80" С, довольно высока. Влияние легирующих элементов па коррозионную стойкость этих сталей в серной кислоте сказывается различно, в зависимости от концентрации ц температуры среды. Хром повышает коррозионную стойкость в 5—30%-иой серной кислоте при температуре 80° С. Никель и медь повышают коррозионную стойкост1з в 5—60%-ной серной кислоте и особенно в 40—60%-ной ири 80° С и в 5— 50%-ной лрн температуре до 80° С. Молибден увеличивает стойкость стали в 5—70%-ной кислоте прн 80° С и в 5—507о-пой при температуре кипения. [c.230]


    В обозначении марок первые две цифры соответствуют среднему содержанию углерода в сотых долях процента буквы за цифрами означают Р — бор, Ю —алюминий, С — кремний, Т —титан, Ф —ванадий, X —хром, Г —марганец, Н —никель, М — молибден, В — вольфрам цифры, стоящие после букв, указывают примерное содержание легирующего элемента в целых единицах (отсутствие цифры означает, что в марке содержится до 11,5% этого легирующего элемента). Буква А в конце марки означает высококачественную сталь. Особовысококачественная [c.219]

    Легированные стали маркируют набором цифр и букв. Буква обозначает легирующий элемент (В — вольфрам, Н — никель, X — хром, М — молибден, К — кобальт, Г — марганец, С — кремний, Ю — алюминий, Т титан), цифра перед буквой — содержание углерода в сотых долях процента, цифра после буквы —содержание легирующего элемента, превыщающее 1% в целых процентах. Например, сталь марки 30X13 содержит 0,3% углерода и 13% хрома, сталь 20ХН2Т — 0,2% углерода, 2% никеля, а также хром и титан в количествах менее 1%. [c.47]

    Легированные стали имеют наименования по названию основных легирующих элементов — хромистые, хромоникелевые, хромо-иикельмолибденовые и др. Легированные стали маркируются буквами, представляющими условные обозначения легирующих элементов Н — никель, М — молибден, Т — титан, X — хром, С — кремний, В — вольфрам, Ф — ванадий и др. Цифра, слсдую Цая за буквенным обозначением, определяет процентное содержа и не соответствующего легирующего элемента, а цифра, стоящая перед первой буквой,— содержание углерода. [c.27]

    Производство стали в электропечах. Применение электрической энергии как источника теплоты в производстве стали позволяет поддерживать в печах более высокую температуру, точнее ее регулировать, создавать восстановительную среду. В электропечах можно выплавлять любые стали, но особое значение эле ктроплавка приобрела в связи с производством легированных сталей. Потери легирующих элементов в электропечах меньше, чем в других печах, в них можно выплавлять стали, содержащие тугоплавкие металлы —вольфрам, молибден и др. [c.178]

    Несмотря на перечисленные достоинства, применс-Н1 с окислителей связано со следующими недостатками. Обычно предварительная подготовка пробы к анализу состоит в переведении анализируемого материала в раствор посредством обработки различными кислотами чаще всего применяют азотную кислоту или ее смесь с хлороводородной или серной кислотой. Так, медные сплавы растворяют в азотной кислоте, причем содержащиеся в них элементы — железо, олово и другие—превращаются в соединения высших степеней окисления. При анализе различных чугунов и сталей необходимо определять ванадий, молибден, вольфрам, титан и нс-которые другие легирующие элементы, которые вследствие обработки пробы окислительными агентами также содержатся в полученном растворе в высших степенях окисления. Железные руды содержат оксиды железа растворяя их в хлороводородной кислоте с добавками различных окислителей, получают железо в степени окисления +3 и т. д. [c.435]

    На рис. 8 показано изменение свойств феррита ирн растворении в нем различных легирующих элементов после медленного охлаждения на воздухе от-975°С [48]. Как видно из кривых, хром, молибден и вольфрам слабее уироч- [c.14]

    Цирконий вводят в белый чугун при получении ковкого чугуна (ля того, чтобы при обработке его в жидком состоянии получить )Олее высокие механические свойства за счет образования первич 1ЫХ чешуек графита в процессе затвердевания. При содержании в )елом чугуне до 0,09% цирконий аналогично титану связан прей лущественно в нитридах. Обработка жидкого чугуна циркониевым юдификатором усиливает влияние таких легирующих элементов, <ак хром, молибден и ванадий. [c.63]

    Исследуемые легирующие элементы по влиянию на порог хладноломкости делятся на две группы 1) №. и Т1 2) W и Мо. Влияние Т1 и ЫЬ не установлено во всяком случае, как и у чистого ванадия, порог хладноломкости сплавов У + МЬиУ + Т1в интервале исследованных концентраций, ниже температуры кипения жидкого азота, т.е. ниже —196° С (рис. 30). У сплава V + 2 ат.% W порог хладноломкости также ниже -196 С, но уже при 5 ат.% он соответствует —80° С (рис. 31). Молибден тоже повышает порог хладноломкости ванадия (рис. 31). Можно считать, гго при 3 ат.% Мо сплав V - Мо имеет Гдо = -70°С, при 5,5 ат.% Мо Гзо = -35°С и при 8 ат.% М0Г50 =0°С. [c.35]

    Молибден. Улучшая технологичность аустенитных материалов при сварке и общую коррозионную стойкость, молибден повышает их склонность к КР. Еще более отрицательный эффект получается при одновременном легировании молибденом и марганцем. Молибден оказывает отрицательное влияние на стойкость аустенитных сталей против КР уже с сотых долей процента. Влияние молибдена, иногда, может быть снивелировано положительным влиянием углерода или других легирующих элементов (никеля, меди). [c.72]

    В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонностъ стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49]. [c.39]

    Поскольку хром и молибден имеют одинаковую кристаллическую решетку и образуют твевдый раствор амещения, можно воспользоваться правилом 5еггарда (линейная зависимость периода решетки от концентрации легирующего элемента) и рассчитать максимальную концентрацию молибдена в поверхностном слое хромового покрытия ,полученном при плотности тока 0,04 а/см и продолжительности электролиза 30 мин. [c.35]

    Легированная конструкционная сталь применяется в большей номенклатуре марок для изготовления ответственных тяжелонагружен-ных деталей машиностроения различного назначения, работающих в условиях знакопеременных нагрузок, при трении, при повышенных температурах. В качестве легирующих элементов используют хром от 0,5 до 3 %, марганец до 2 %. кремний до 1,5 %. никель до 4,0 /о, молибден до 0,5 %, ванадий до 1 %, вольфрам до 1 %. [c.68]

    Все легирующие элементы, повышающие окалиностойкость стали, дают тугоплавкие окислы, достаточно прочные при высокой температуре. Молибден, окислы которого легко испаряются при высокой температуре, не пригоден для легирования окалиностойких сталей, однако оп может значительно повышать коррозионную стойкость в алресоивных средах при электрохимической коррозии. [c.68]

    Из уравнения (209) видно, что разность результирующих потоков у поверхности нагрева и у ограждающей поверхности будет тем больше, чем больше коэффициент отражения (р ) ограждающей поверхности. Чем больше рк, тем меньше расход тепла с охлаждающей водой, поэтому для рефлекторных печей состояние отражающей поверхности имеет решающее значение. Относительно низкая температура отражающей поверхности нужна для сохранения высокого коэффициента отражения (ом. рис. 150). Хотя в принципе возможны н пламенные рефлекторные печи, если окажется практически целесообразным, тем или иным способом (например, с помощью электрического поля) не допускать непосредственного контакта плам ени с отражающей поверхностью [147], но практически пока нашли применение только рефлекторные электрические печи сопротивления (см. рис. 199). Пользуясь тем, что в безокислительной среде уменьшение коэффициента отражения р для некоторых сплавов происходит медленно, рефлекторные печи можно делать с малым внешним охлаждением при услоени, если ограждающая поверхность будет состоять из поставленных друг за другом отражающих экранов (см. рнс. 199, б). Так, существуют вакуумные печи [216] для термообработки, экраны которых выполнены из стали, легированной молибденом и танталом. Вполне понятно, что чем больше вакуум, тем лучше работают указанные печи, если только не происходит испарения легирующих элементов в вакууме. [c.341]

    При маркировке легированной стали легирующие элементы обозначают следующими буквами X —хром. И —никель, М —молибден, Т —титан, Д —медь. С —кремний, Б — ниобий, А—азот, Г — марганеи, Ю — алюминий, В — вольфрам, Ф — ванадий, К — кобальт, П — фосфор, Ц — цирконий, Р — бор. Цифры, стоящие после буквы, обозначающей легирующий элемент, указывают среднее содержание (в процентах) этого элемента в сплаве, а стоящие перед первой буквой — содержание (в десятых долях процента) углерода. [c.321]

    Основным легирующим элементом большинства легированных сталей является хром, К коррозионностойким относятся такие стали и сплавы, содержание хрома в которых составляет не менее 12%. Кроме того, в зависимости от назначения хромистых стгией их дополнитель[ю легируют никелем, молибденом, кремнием, медью, алюминием, титано,м, ниобием, азотом и некоторыми другими элементами. [c.80]

    Эти стали имеют двухфазную структуру, состоящую из феррита и аустенита. Основными дополнительными легирующими элементами в них являются молибден, медь, титан и ниобий. Оптимальным считается такое соотношение легирующих элементов, при котором после терг 1нческон обработки содержание ферритной и аустенитной фаз в сталях составляет 1 1. [c.97]

    В биотехнологии также широко применяют чугун, из которого делают компрессоры, поршневые кольца, рамы фильтрпрессов и др, некоторые чугунные аппараты покрывают эмалью Хром, никель, молибден — как легирующие элементы повышают жаростойкость и химическую стойкость чугзгна Такой Ч5ггун полезен, например, для изготовления отдельных частей барабанных сушилок, работающих при повышенных температурах [c.294]


Смотреть страницы где упоминается термин Молибден как легирующий элемент: [c.205]    [c.215]    [c.215]    [c.8]    [c.24]    [c.43]    [c.80]    [c.47]    [c.50]    [c.50]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.95 , c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Элементы легирующие



© 2025 chem21.info Реклама на сайте