Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение алюминия химическими сталях

    В работе [1] приведены результаты исследований ряда аустенитных хромоникелевых сталей, легированных титаном, ниобием, алюминием, кремнием и молибденом в количестве 1,2—1,5 %. Химический состав сталей и средние значения скорости переноса масс представлены в табл. 17.1 и 17.2. Испытания по определению переноса масс проводили в течение 1000 ч в потоке жидкого натрия при 900 °С на входе в испытательный участок, 860 °С на выходе и массовом содержании кислорода (1—3)-10 %. [c.262]


    Широкие возможности в конструировании рациональных форм малоизнашивающихся электродов (МИЭ) для ряда электрохимических процессов открылись в связи с развитием составных электродов. Б первоначальных конструкциях платиновых электродов для придания им механической прочности и жесткости, а также для подвода (развода) тока в качестве каркаса электрода использовали металлы с хорошей электропроводностью (медь, алюминий, сталь и др.), заш иш енные от коррозии стеклом, кварцем или полимерными материалами. Таким образом, уже самые первые типы конструкций электродов, применявшихся в промышленности, часто решались как составные электроды. Однако, возможности для упрощения конструкции таких электродов, повышения их надежности в работе и снижения их стоимости появились только после того, как стали доступны для использования титан и другие аналогичные металлы. На поверхности таких металлов при анодной поляризации в определенных условиях могут возникать окисные плотные пленки, обладающие высокой химической стойкостью в условиях анодной поляризации, защищающие в дальнейшем основу электрода от разрушения и не препятствующие передаче тока от металла к активному слою электрода. [c.107]

    Как видно, контакт алюминия с нержавеющей сталью приводит к совершенно неожиданным результатам наряду с процессом растворения алюминия, который является желательным при химическом растворении тепловыделяющих элементов, наблюдается усиленная коррозия нержавеющих сталей, т. е. аппаратуры, в которой производится этот процесс. Это интересное явление было подробно исследовано Миролюбовым 112]. Автор показал, что скорость растворения нержавеющих сталей в азотной кислоте сильно зависит от потенциала электрода (рис. 61). По мере смещения потенциала в отрицательную сторону скорость растворения нержавеющих сталей до определенного потенциала возрастает. После этого начинается замедление процесса. Это является следствием изменения состояния поверхности стали при изменении ее потенциала. При достижении определенного потенциала, значение которого зависит от состава стали, концентрации электролита и его температуры, становится возможным восстановление пассивирующей окисной пленки и [c.187]

    Никитина Е. И. Фотоколориметрическое определение малых количеств магния в жаропрочных сплавах с помощью алюминона (полумикрометод). В сб. Новые методы химического анализа сталей и сплавов. [М.], Оборонгиз, 1952, с. 29—31. 4953 Никитина Е. И. Полумикрохимические методы количественного и качественного анализа сплавов алюминия и магния. Автореферат дисс. на соискание учен, степени кандидата технических наук. [М.], 1952, 12 с. (М-во авиац. пром-сти СССР). 4954 Никитина Е. И. и Глазова А. И. Микрохимический количественный анализ сталей. [М.], 1948, 15 с. (Всес. н.-и. ин-т авиац. м-лов. Инструкция № 201-48). Сост. указаны в конце текста. Без тит. л. 4955 Никитина Е. И. и Сажина Л. А. Колориметрическое микроопределение железа в легких сплавах. Тр. № 73 (М-во авиац. пром-сти СССР [М.], Оборонгиз), 1949, с. 1-2. [c.193]


    Межкристаллитная коррозия распространяется по границам кристаллитов (зерен) металла. Этому виду коррозии подвержены некоторые сплавы (хромистые и хромоникелевые стали, сплавы на основе алюминия, никеля), у которых при определенных режимах термообработки, при старении или под напряжением изменяется химический состав на границе зерна по сравнению с составом в объеме зерна. Под действием коррозионной среды одна из структур, расположенная по границе зерна в виде непрерывной цепочки, растворяется при потенциалах активного состояния в этом случае анодная реакция локализуется на границе зерна, а само зерно металла (объем) находится в пассивном состоянии и разрушается мало. [c.40]

    Оксидирование металлов заключается в создании на поверхности плотных пленок их оксидов, что осуществляется либо химическим, либо электрохимическим путем. В. первом случае очищенную от продуктов коррозии и обезжиренную деталь погружают на определенное время в раствор окислителей, который вызывает пассивацию (гл. X, 2) металла. Так проводят воронение стали, для чего стальной предмет можно выдержать до 90 мин в смешанном растворе NaNOз (50 г/л), НаМОг (200 г/л) и МаОН (800 г/л) при 140°С (метод Е. И. Забываёва). Во втором случае обрабатываемый металл помещают в окислительный раствор и для интенсификации его окисления подключают к положительному полюсу источника постоянного ток , делая его анодом. Так получают оксидированный (анодированный) алюминий. [c.197]

    К сравнительно новым областям применения пластифицированного ПВХ относится производство слоистых пластиков на его основе, где листы из ПВХ сочетаются со сталью, алюминием, медью и другими металлами. Слоистые пластики отличаются стойкостью к истиранию, а также высокой стойкостью к действию химических реагентов. Они могут применяться для изготовления щитов управления, деталей машин, корпусов телевизоров, футляров и деталей счетных машин, контейнеров, чемоданов и т. д. ПВХ определенных марок при комнатной температуре образует с пластификаторами густые суспензии (пластизоли, пасты), которые наносят на изделия (распылением, маканием и т. д.) и при последующем нагревании получают однородные пленки. Ткани, покрытые поливинилхлоридными пастами, используются для получения искусственной кожи. Пастами из ПВХ покрывают полиамидные ткани, применяемые в качестве брезента . [c.13]

    Двуокись циркония. Важнейшая область применения 2гОг — производство высококачественных огнеупоров-бакоров. Ба-коры — лучший футеровочный материал в стекловаренных печах и печах для плавки алюминия, так как они слабо взаимодействуют с расплавами. Их применение позволяет увеличить длительность кампании печей в 3—4 раза по сравнению с печами, футерованными шамотом или динасом, и интенсифицировать плавку за счет повышения температуры. Огнеупоры на основе стабилизированной двуокиси применяют в металлургической промышленности для желобов, стаканов при непрерывной разливке стали, тигелей для плавки редких металлов и т. д. 2гОг используют в защитных металлокерамических покрытиях (керметах), которые обладают высокой твердостью и устойчивостью ко многим химическим реагентам, выдерживают кратковременное нагревание до 2750 . Двуокись, пропитанная фенольной смолой, выдерживает нагревание до 2200° и может быть использована для теплоизоляции космических кораблей. Стабилизированная окисью кальция применяется в магнитогидродинамических генераторах, в качестве твердого электролита в топливных элементах и в приборах по определению содержания кислорода в расплавленных металлах. [c.307]

    В книге описаны методы химического анализа чу1 уна и различных марок стали, применяемых при определении углерода, кремния,. марганца, фосфора, серы, никеля, кобальта, хрома, ванадия, вольфрама, молибдена, алюминия, титана, меди и мышьяка. [c.2]

    Эти же исследователи установили, что при одних и тех же соотношениях компонентов, входящих в раствор, химическое никелирование титана протекает значительно активнее и скорость его выше, чем на стали и алюминии. Авторы предложили следующую эмпирическую формулу определения скорости процесса в зависимости от содержания гипофосфита натрия  [c.13]

    Жаростойкие стали и сплавы характеризуются образованием на их поверхности защитных пленок окислов, которые защищают металл от разрушения. Сопротивление окислению при высоких температурах зависит от химического состава сталей и сплавов, стойкости защитных пленок окислов и характера среды, в которой происходит окисление. Установлено, что хром сообщает стали высокую сопротивляемость окислению. При наличии в стали до 12% хрома она обладает жаростойкостью до температуры 700—750°. При содержании хрома до 17% жаростойкость возрастает до 850—900°, а при содержании хрома до 25% —до 1100°. Помимо хрома, на увеличение жаростойкости стали влияют кремний, алюминий и бериллий, поэтому в состав жаростойких сталей и сплавов вводятся хром, кремний, алюминий и другие элементы в определенных количествах, определяющих, их жаростойкость. [c.225]


    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    С. Мухина, Е. И. Никитина, Л. М. Буданова, Р. С. Володарская, Л. Я. Поляк, А. А. Тихонова. Методы анализа металлов и сплавов. Оборонгиз, 1959 (528 стр.). В книге рассмотрены методы анализа сталей, чугунов, жаропрочных сплавов, ферросплавов и шлаков, а также сплавов на основе алюминия, магния и меди. Приведены методики определения большого количества легирующих элементов в этих материалах. Вводная глава содержит характеристику физико-химических методов анализа. [c.477]

    Хотя обычно применяемые металлы, как, например, медь или простая сталь, достаточно хорошо сопротивляются окислению при средних температурах в условиях высоких температур, когда диффузионные процессы идут с (большой скоростью и, особенно, если металл подвергается истиранию или механическому напряжению, необходима более высокая степень сопротивления. В этих случаях приобретают особую ценность свойства алюминия, хрома и кремния, которые, усиливая непроницаемость пленок, сообщают стали сопротивление газовой коррозии. Однако хороший жаростойкий материал должен быть не только достаточно химически стойким, но также иметь соответствующие механические свойства и, в особенности, противостоять ползучести при высоких температурах. Механическая прочность и химическая устойчивость сопутствуют до некоторой степени друг другу. Пластическая и даже, возможно, упругая деформация металла ведет к определенной опасности разрыва защитной окисной [c.144]

    В литературе имеются данные по определению малых количеств благородных металлов в различных катализаторах [1]. В настоящем сообщении приведены разработанные нами методики химического анализа рутениевых и иридиевых катализаторов на окиси алюминия, содержащих 5% (и более) металла, которые в последнее время стали широко применяться в реакциях гидрирования. [c.26]

    Счетчики заполняются определенной газовой смесью. Корпус изготовляется из алюминия, нержавеющей стали или стекла, на которые осаждается слой какого-нибудь металла, например, меди. Посредине натягивается нить из химически стойкого материала, например, вольфрама. Между нитью и корпусом подается необходимая разность потенциалов Уа. Обычно нить является анодом, а корпус катодом. Напряженность электрического поля особенно велика вблизи нити. При попадании внутрь счетчика частицы (а-или Р-) происходит ионизация газа, В случае у-квантов ионизация газа внутри счетчика в основном осуществляется фото- и комптоно-вскими электронами, появляющимися при взаимодействии излучения со стенками счетчика. В результате ионизации газа образуются электроны и положительные ионы, В некоторых случаях электроны могут прилипать к нейтральным молекулам, давая отрицательные ионы. [c.45]

    Стремление упростить очень сложную аппаратуру привело П. И. Л е-бедева к выработке нового способа определения кислорода в стали, который автор называет вакуум-алюминиевым. Способ основан на том, что при температурах, лежащих выше температур плавления чугуна и стали, алюминий восстанавливает не только закись железа, но и закись марганца, окись углерода и двуокись кремния. Отсюда ясно, что если плавить стальной образец с добавкой алюминия в вакууме, во избежание окисления кислородом воздуха, и подбирать все прочие условия опыта (температуру, процент вводимого алюминия, время выдержки и пр.) так, чтобы алюминий количественно восстанавливал все окислы, заключающиеся в стальном образце, го, определяя затем химическим путем в полученном сплаве количество окиси алюминия, можно считать, что кислород окиси алюминия соответствует содержанию общего кислорода в образце стали. [c.202]

    Химическая и каталитическая инертность стекла по отношению ко многим соединениям послужила причиной полной модернизации газовой схемы хроматографа фирмы Р. а. М с целью исключения возможности контакта компонентов анализируемой смеси с металлом [85]. Исследования, проведенные на колонках из меди, нержавеющей стали, фторопласта и стекла при хроматографическом анализе смесей двуокиси азота с воздухом, показали невозможность использования других материалов, кроме стекла, вследствие сорбции и конденсации, происходящих на поверхности колонок. Стеклянные колонки оказались незаменимыми также при определении микропримесей органических соединений в диборане [86], серусодержащих газов (сероводорода, сероуглерода, двуокиси серы и других) [87], хлористого водорода и хлора [88], галогенированных углеводородов [58, 59], органических соединений бора, бериллия, алюминия, фосфора, цинка и олова [9], фосфатов, аминов, триазидов [89], хлорорганических примесей в четыреххлористом германии и углеводородах [52, 53]. Полностью оправдало себя применение стеклянных колонок при хроматографическом анализе полиолов и ванилинов, позволившее исключить адсорбцию анализируемых соединений на поверхности колонки [90]. Замена фторопластовых колонок на стеклянные при анализе продуктов разложения три- [c.73]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Определение в сплавах. Спектральный анализ стали проводят в большинстве случаев без химического обогащения. Однако некоторые линии железа (3933,61 A) накладываются на аналитические линии кальция (3933,67 A) и затрудняют анализ. Вместе с тем по указанным линиям кальций определяют довольно часто. Сталь растворяют и определяют кальций при введении в разряд раствора с помощью фульгуратора или нанесением капель раствора на угольный электрод (второй электрод — медный). Сравнивают линию Са II 3933,67 и линию Ге I 3957,08 А [411]. С использовапп-ем специальных приемов спектрографирования анализировать можно твердые образцы стали, используя их в качестве одного из электродов. В качестве постороннего электрода применяют серебро [1117[ или алюминий [274]. В этих случаях анализируют в искре Фейсенера [274). Мешают определению кальция>0,1 /о Сг. Сравнивают пары линий Са 3933,67 — Ге 3930,30 А. [c.132]

    Синтезированные описанными выше методами цеолитные катализаторы крекинга необходимо подвергнуть тщательному анализу и определить их химические и физические характеристики. Определение активной окиси алюминия [9], а также титрование с индикаторами Гаммета [33—35] стали классическими методами анализа алюмосиликатов. Однако в цеолитсодержащих катализаторах крекинга связь между концентрацией активной окиси алюминия, кислотностью и активностью установить не удается. Известно, например, что в аморфных алюмосиликатах анализ на активную окись алюминия позволяет количественно определить содержание тетраэдрически координированных атомов алюминия, которое в свою очередь пропорционально каталитической активности и селективности. Между тем, когда этот же метод попытались применить для исследования цеолитных катализаторов, содержащих одинаковое количество цеолитной состав- [c.242]

    К сожалению, многие из хорошо известных в настоящее время коллоидов—это как раз те, которые Кремер, Уильямс и Олберти назвали случайными коллоидами. Эти вещества унапример, гидроокиси железа и алюминия или коллоидное золото), как известно, существуют обычно в виде молекул маленького размера. То, что они иногда находятся в форме коллоидных частиц, т. е. частиц большого молекулярного веса, связанного е агрегацией за счет сил межмолекулярного взаимодействия, со стабилизацией микрокристаллов поверхностными слоями ионов и т. д., не обясняется каким-то существенным различием между этими веществами и другими обычными химическими соединениями. Физико-химики поэтому стали скорее говорить о коллоидном состоянии вещества , а не о коллоидных веществах . Росла убежденность в том, что все вещества могут в определенных условиях переходить в коллоидное состояние. [c.11]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]

    Строительные панели с ППУ и фенольными заполнителями, изготовляемые фирмой Вайкинг (Англия), облицовывают бумагой с битумом, алюминием, фанерой, сухой штукатуркой, картоном, стекловолокном, листовой и кровельной сталью. Освоен серийный выпуск этих панелей инверсионным способом, при котором исходная композиция ППУ веерообразно набрызгивается на облицовочный материал и равномерно распределяется по его поверхности. Увеличение количества пены ограничено инверсионной плитой, перемещающейся возвратнопоступательно. По окончании процесса вспенивания клейкая поверхность ППУ соприкасается с жестким листом и прочно соединяется с ним. После этого материал проходит через зазор между двумя конвейерными линиями при определенном небольшом давлении. Далее полученный слоистый материал разрезается. Такие материалы применяют в качестве конденсационно-стойких прокладок, для изоляции сельскохозяйственных зданий, крыш, промышленного плакирования, звукотеплоизоляции стен и перекрытий, изоляции баков для химических веществ. Вследствие значительного возрастания прочности панелей создается возможность увеличения длины пролетов. [c.220]

    На количество и природу интерметаллид-ного слоя могут оказывать сильное влияние добавки определенных веществ в ванну с расплавленным металлом покрытия. К ним относятся кремний, добавляемый в ванну алюминирования, пли алюминий, добавляемый в ванну цинкования. Заметное влияние может оказать и химический состав подложки. Например, малоуглеродистая сталь, содержащая небольшие количества кремния, взаимодействует (сплавляется) с цинком с гораздо большей скоростью, чем эта же сталь без кремния. Хотя такой слой сплава, как правило, считают однородным, он обычно состоит из двух пли более слоев различных интерме-таллидных фаз, свойственных данному сплаву. [c.359]

    Типичные представители двух классов веществ, а именно, галоидные алкилы и ароматические углеводороды, которые считались неспособными в качестве среды к непосредственному участию в образовании ионов, стали хорошими проводниками (как это было показано) при добавлении хлористого алюминия. Электропроводность была прослежена до образования соединений благодаря участию потенциальных валентностей некоторых содержавшихся в них атомов. Образование этих соединений и их относительная стойкость в реакциях Фриделя- Крафтса до1 азывается тем фактом, что выделяется очонь немного кислоты, цока концентрация хлористого алюминия не превысит определенного значения. Таким образом, в некоторых случаях, повидимому, имеются убедительные доказательства, что химическая реакция является причиной, а ионизация—результатом того, что выбранные вещества подвергаются тем реакциям, котор1,]е, как показал опыт, представляют их специфическую особенность. [c.39]

    Химическая стойкость нержавеющих сталей, хрома, алюминия и других так называемых самопассивирующихся металлов и сплавов повышается после выдержки их в атмосфере воздуха или кислорода в течение определенного времени. Такое же явление наблюдается и для титана. Титан после полировки или травления активируется 40%-ным раствором серной кислоты в течение нескольких секунд после длительной выдержки на воздухе активация титана в этом же растворе наступает примерно через 2 часа. [c.60]

    Больщое число исследователей изучали химическое окисление алюминия в контакте с тяжелыми металлами, и здесь достаточно будет привести пример из некоторых исследований, проведенных Ферко [45а], применявшего метод Альрок для обработки американских сплавов 40Е, 195 и 356.. Образцы из этих сплавов без покрытий соединялись болтами с прокладками из углеродистой стали некоторые из болтов имели кадмиевые или цинковые покрытия, причем образцы из алюминия взвешивались. Образцы с химическими и анодными покрытиями также взвешивались и контактировались с углеродистой сталью и со сталью, имеющей покрытия. Образцы подвергались солевому опрыскиванию в течение 200 час., после чего они разъединялись на составные части образовавшиеся продукты коррозии удалялись попеременным кипячением в воде и в этиловом спирте и очищались щеткой перед кипячением в этиловом спирте. Затем образцы промывались в спирте и взвешивались для определения потери веса. [c.123]


Смотреть страницы где упоминается термин Определение алюминия химическими сталях: [c.17]    [c.249]    [c.80]    [c.17]    [c.20]   
Аналитическая химия алюминия (1971) -- [ c.209 , c.214 ]

Аналитическая химия алюминия (1971) -- [ c.209 , c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Определение алюминия в сталях

Определение алюминия химическими



© 2025 chem21.info Реклама на сайте