Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газовая проба, обработка

    В другом простом и удобном методе определения содержания жирных кислот (от С4 до i8) в растительных и животных жирах пробу в течение 2 мин нагревали при температуре 65 °С с метилатом калия в метаноле под слоем азота в течение последних 0,5 мин нагревания реакционную смесь встряхивали. По окончании нагревания в реакционную смесь добавляли смесь силикагеля с хлоридом кальция, перемешивали ее, а затем добавляли S2 и встряхивали сосуд после осветления полученного раствора центрифугированием пробу S2 вводили в газовый хроматограф. Введение силикагеля приводит к тому, что реакционная смесь становится гомогенной и облегчается экстракция из нее метиловых эфиров сероуглеродом. Кроме того, силикагель поглощает небольшие количества присутствующих в маслах свободных жирных кислот, которые мешают анализу. Хлорид кальция образует комплекс с метанолом, и благодаря этому хроматографический пик метилового эфира масляной кислоты не искажается пиком метанола. Наконец, в отличие от метанола S2 не искажает пиков метиловых эфиров низкомолекулярных жирных кислот. Этот быстрый метод дает результаты, которые вполне сравнимы с результатами более длительных анализов [57]. При описанной выше обработке пробы метилатом калия метиловых эфиров свободных жирных кислот не образуется. Для метилирования этих кислот нужно добавить в смесь ВРз и нагревать ее еще в течение 2 мин при температуре 65 °С. [c.142]


    Боргидриды восстанавливают соединения с карбонильными группами до спиртов. Эту реакцию использовали для определения 10 % формальдегида в уксусном альдегиде. К концу ГХ-колонки подсоединяли на специальном креплении трубку размерами примерно 8x0,6 см, заполненную равномерно размолотым боргидридом калия [37]. С помощью пламенно-ионизационного детектора гораздо легче определить метанол, полученный восстановлением формальдегида, чем сам формальдегид. Ротенон обычно дает многочисленные широкие хроматографические пики, а после обработки боргидридом натрия — один четкий пик. Дело в гом, что кето-группа ротенона восстанавливается до гидроксильной группы, которая при введении пробы в газовый хроматограф теряется в результате дегидратации [38.  [c.98]

    Для определения органических и неорганических примесей в газах, утечек кз газопроводов, технологического оборудования и колодцев. Выполнен в виде блока, удобного для переноски. Внутри блока - узлы отбора и ввода проб, обработки и отображения результатов анализа, термостатируемые колонки детектор ДИП и калориметр ТР блоки электрического и газового питания. Обработка результатов анализа с помощью встроенной микропроцессорной системы, позволяющей определять концентрации разделяемых соединений (до 30 пиков), а в режиме интегратора (определение высот или площадей пиков) - до 99 пиков. Электропитание - от встроенного или внешнего аккумулятора [c.99]

    Естественно, вакансии возникают не только при дозировании чистого газа-носителя. Тот же эффект дает разбавление пробы. Еще в работе [27] этот особый вариант газовой хроматографии был применен для определения ничтожных количеств постоянных газов и метана в аргоне. Поскольку в распоряжении не имелось совершенно чистого аргона, в качестве газа-носителя была использована проба с известными концентрациями загрязнений, куда и дозировался газ исследуемых проб. Обработку проводили по вакантным пикам, площади которых пропорциональны разности концентраций для известной смеси и исследуемых проб. Аналогичный метод позже в работе [29] был назван вакантной хроматографией пробы. Авторы указанной работы добавляли к потоку пробы после прохождения реактора неизмененный исходный продукт. [c.381]

    Для отделения пробы от ее матрицы с целью очистки и концентрирования интересующих соединений используют методы адсорбции и абсорбции, жидкостной и газовой экстракции (статический и динамический варианты), дистилляции, вымораживания, причем часто прибегают к комбинированию отдельных названных методов и их разновидностей, включая обработку порций анализируемого материала специфическими химическими реагентами для обеспечения селективности определения уже на стадии пробоотбора и повышения чувствительности последующего газохроматографического анализа. С отличительными особенностями подготовки проб к анализу, связанными с различиями в природе анализируемых объектов и характером поставленной задачи, требующими соблюдения определенного регламента выработанных процедур и использования специального оборудования, можно познакомиться в специальных монографиях и обзорах (22—291. [c.157]


    Предварительная химическая обработка пробы и реакционная газовая хроматография как вспомогательные средства для идентификации [c.354]

    Нулевую пробу приготовляют следующим способом. В платиновую чашку вводят 2 мл содового или бикарбонатного раствора, выпаривают досуха и прокаливают до сплавления в пламени газовой или бензиновой горелки. После остывания чашки смачивают ее содержимое 15—20 мл обескремненной дистиллированной воды. Нагревая жидкость на кипящей водяной бане в течение 5—7 мин, вводят в нее 4 мл 0,1 н. серной кислоты и переливают раствор в мерную колбу емкостью 50 мл. В чашку вновь вводят 15—20 жл обескремненной дистиллированной воды, нагревают ее 5—7 мин на кипящей водяной бане и переливают в ту же мерную колбу. При обработке содержимого чашки водой, стремятся смочить всю ее внутреннюю поверхность, чтобы полностью растворить осадок. Собранный в мерной колбе раствор затем используют для. колориметрического определения кремниевой кислоты, содержащейся во всех применяемых реактивах. [c.400]

    Прибор — это общее название широкого класса устройств, предназначенных для измерений, производственного контроля, управления машинами и установками, регулирования технологических процессов, вычислений, учета, счета. Аналитики располагают набором различных приборов, позволяющих проводить качественный и количественный анализы веществ, находящихся в различных агрегатных состояниях. Приборы эти различаются по сложности, надежности, универсальности и стоимости — ЭТО и такие простые устройства, как пипетки, бюретки, секундомеры и т. п. [1], и такие сложные системы как ИК-спектрометр [2], газовый хроматограф [3], масс-спектрометр [4] и компьютер. Практическому применению приборов для химического анализа посвящено много хороших учебников [5— 9], в каждом из которых, кроме того, проводится систематизация существующих методов анализа. Химик-аналитик использует приборы не только для идентификации того или иного соединения и установления его количественного содержания, но и для проведения многих вспомогательных операций, например, таких, как отбор и предварительная обработка проб. К этому классу приборов относятся весы, пипетки (автоматические) для дозировки и разбавления проб, шприцы и клапаны для впрыскивания жидких или газообразных веществ, автоматические средства для сортировки и разделения, например центрифуги и противоточные аппараты. Приборов подобного типа очень много, однако мы ограничимся рассмотрением лишь тех из них, которые 1) могут работать в автоматическом режиме под управлением компьютера 2) требуют использования компьютера из-за сложности аналитического оборудования  [c.89]

    До сих пор в том, что касается НФ для газовой хроматографии, нет единого мнения о различиях между сшитыми (поперечно-сшитыми) и привитыми фазами. Каковы в точности преимущества того или иного вида обработки При проведении большинства разделений необходимо, чтобы фаза была устойчива к действию вводимого растворителя и температуры в течение определенного срока работы [83]. На рис. 2-9 проведено сравнение хроматограмм, полученных при непосредственном вводе в колонку растворенной в метаноле пробы. Первая хроматограмма получена после одного ввода пробы, вторая — после ста вводов. Полученные данные освидетельствуют о стабильной работе колонки после ста вводов времена удерживания компонентов пробы не изменились, а полученные пики симметричны. Качество колонки гарантирует надежную работу в экстремальных условиях. [c.20]

    Отбор проб газа на анализ. Первым условием определения содержания в газовой смеси какого-либо компонента является правильный отбор пробы для анализа и ее обработка. При отборе пробы газа необходимо учитывать, в каком агрегатном состоянии находится определяемое вещество и те вещества, что ему сопутствуют, а также является ли проба типичной и характерной для общей массы анализируемого газа. [c.235]

    Газовый хроматограф состоит из систем измерения и регулирования скорости потока газа-носителя и вспомогательных газов (для детектора) ввода пробы анализируемого образца газохроматографических колонок, а также систем детектирования, регистрации (и обработки) хроматографической информации термостатирования и контроля температуры колонок, детектора и системы ввода проб. [c.106]

    В настоящее время основу выпуска составляют приборы серии Цвет-500 — лабораторные хроматографы для решения разнообразных задач аналитического контроля в промышленности и наз чных исследованиях. Их универсальность определяется 3 первую очередь набором детектирующих устройств, среди которых детекторы пламенно-ионизационный, по теплопроводности, электронного захвата, термоионный и пламеннофотометрический. Анализ ведут на стальных и стеклянных насадочных колонках в изотермическом режиме или при программировании температуры в диапазоне от (—99) до 14-399) °С. Анализируемые пробы вводят микрошприцем или проточными газовым и жидкостным дозаторами. Все хроматографы снабжены микропроцессорной системой обработки сигнала детектора, позволяющей автоматически проводить измерение параметров пиков, расчет градуировочных коэффициентов н концентраций анализируемых компонентов с использованием методов абсолютной градуировки, внутреннего стандарта и нормализации. [c.166]


    Проба воды после газового холодильника по эффекту намагничивания хуже, чем проба, взятая непосредственно после аппарата, из-за недостаточной равномерности магнитной обработки воды по всему объему холодильника, однако и в этой пробе отмечается влияние магнитной обработки (появились частицы размером 5—- [c.38]

    Показано, что эффект конусности ограничивается скоростями газового потока, превышающими на 30% величину скорости минимального исевдоожижения, и высотой слоев больше 600 мм. В аппаратах с цилиндрической вставкой уменьшение скоростей вертикального перемешивания не наблюдается. Были разработаны удовлетворительные способы отбора проб н индикаторная техника. Подтверждена также важность статистического метода планирования и обработки опытных данных. [c.97]

    В эмиссионном спектральном анализе, поскольку определение можно проводить с исходным твердым веществом, предварительная обработка пробы сводится только к ее тщательному растиранию в агатовой ступке вместе с необходимыми добавками (порошком графита, спектральными буферами и др.) и к зарядке электродов смесью. В газовой хроматографии определяемый компонент переводят в легколетучую форму, которая при введении в испарительную камеру быстро переходит в газообразное состояние. [c.449]

    Лаборатория газоаналитических определений (цеховая) ТУ 25-11-712—77 ЛИВ-1 Анализ и контроль загрязнений во<-духа в цехах промышленных предприятий с целью оценки условий труда. (Может быть использована в НИИ и чя санитарно-эпидемиологических станциях ) Состоит из блоков отбора проб В05-духа, весового, подготовки к химическому анализу, химического анализа, спектрофотометрии, фотоэлектроколориметрии, переменнотоковой полярографии, газовой хроматографии и камеральной обработки. [c.333]

    Так, во многих приборах отсутствуют устройства для предварительной обработки проб и их удаления. В таких приборах, как поляриметры, рефрактометры, вискозиметры и т. д., может отсутствовать отдельная система разделения, тогда как в газовых или жидкостных хроматографах, масс-спектрометрах и большинстве спектроскопических приборов такая система непременно присутствует. [c.93]

    С развитием автоматических программаторов температуры, переключателей чувствительности, устройств для ввода пробы, цифровых интеграторов и вычислительных систем для автоматической обработки данных (компьютеров) появилась возможность автоматизации процессов газовой хроматографии. [c.185]

    Во многих промышленных и исследовательских лабораториях требуется проведение непрерывных контрольных измерений и немедленная обработка полученных данных. Например, в медицинских лабораториях повсеместно применяется исследование биологических проб с целью определения в них содержания гормональных веществ. В химической промышленности хроматограф часто используется для непрерывного контроля течения какой-либо химической реакции или для контроля чистоты поступающих реагентов. В этих случаях автоматизация процессов газовой хроматографии оказывается особенно необходимой. Она дает следующие преимущества. [c.185]

    Первый принцип, используемый при радиоуглеродном датировании — косвенные измерения на сцинтилляционных и пропорциональных счётчиках. В ряде лабораторий для измерений используют газовый пропорциональный счётчик, но в большинстве лабораторий используется сцинтилляционный метод. Его преимущество заключается в возможности введения в небольшой объём большого количество измеряемого углерода, что позволяет увеличить чувствительность и соответственно предел датирования счётчика. Для датирования, после предварительной обработки и очистки углерода образцов из них синтезируют счётное вещество бензол для сцинтиллятора или газ (метан, ацетилен, углекислый, этан и т. п.) для пропорционального газового счётчика (Арсланов, 1987). В жидкий сцинтиллятор (бензол) можно ввести на два порядка больше углерода, чем в тот же объём газового счётчика. Поэтому предел возрастного датирования сцинтилляционных установок больше, чем газовых. Однако в тех случаях, когда вес углерода пробы меньше 1-2 г, измерения удобнее проводить на газовых счётчиках. [c.570]

    При изготовлении электродов из угля и металлов необходимы различные токарные станки, фасонные резцы и фрезы и, наконец, технические и аналитические весы. Для растворных методов и химической обработки материалов требуется соответствующее специальное лабораторное оборудование и, в частности, различные печи для сплавления и сжигания, приборы для испарения и дистилляции, платиновая, фарфоровая, стеклянная и пластиковая посуда и т. д. Для газового анализа или для анализа специальных материалов нужно иметь специальный инструмент и приборы для пробоотбора, перемешивания и обработки. Наконец, во всех случаях к основным приборам совершенно необходимы дополнительные и вспомогательные устройства, детали и приспособления, например соответствующие подставки для проб при искровом возбуждении, спектральные лампы, конденсорные линзы, зеркала, фильтры, кас-еты для пластинок и т. д. [c.181]

    Оперативное тушение загораний в радиоактивных зонах возможно только с помощью автоматических установок. Особое внимание здесь следует уделить защите трубопроводов системы охлаждения, гидравлики и электрических кабелей. В зоне обслуживания для защиты электронных блоков управления и ЭВМ рекомендуется использовать автоматические установки пожаротушения хладоном 1301 в кабельных помещениях и на трансформаторных подстанциях — дренчерные установки. В машинном зале АЭС, для которого характерны сложная пространственная геометрия и разновысокие потолки, пожарные извещатели размещаются в местах повышенной пожарной опасности — у насосов системы смазки, у подшипников турбин на электрических агрегатах и у кабельных линий. В качестве примера АЭС, оснащенной современной системой пожарной безопасности фирмы erberus (Швейцария), указывается атомная станция RIO III в Аргентине. В состав системы входят 1630 пожарных извещателей, 90 извещателей с камерой для отбора газовой пробы, 12 автоматических огнетушащих установок. Вся сеть пожарных извещателей разделена на 432 группы с И промежуточными пунктами обработки сигналов, при этом в структуре сети предусматривается возможность ее расширения и модификации при минимальных затратах. Каналы передам сигналов системы пожарной безопасности дублируются аналогичными каналами систем защиты от проникновения людей в опасную зону, что суще- [c.319]

    Выражение (2.19) очень часто применяют и для нестатщонарного режима горения в слое при обработке экспериментальных данных по составу газа, полученных путем отбора газовых проб с течением времени на некотором определенном расстоянии от начального сечения слоя (см. рис. 30 а) [59]. [c.372]

    Другая поправка, которую нужно учитывать при обработке результатов лазометрических анализов, связана с тем, что момент отбора газовой пробы не совпадает с моментом реакции. При полной турбулизации газо-паровой фазы необходимо учитывать лишь время, потребное для перемещения газа по выпускной коммуникации. При отсутствии турбулизации поправка должна исчисляться с учетом времени, необходимого для перемещения элемента объема лаза от поверхности жидкой фазы до выхода из системы. [c.80]

    При выборе улавливающего оборудования необходимо учитывать последующую обработку материала. Если требуется определить только его общее количество, можно применять практически любой из приведенных выше методов, поскольку улавливающее устройство можно взвесить до и после отбора пробы, и вычислить чистую массу образца. Если образец должен далее подвергнуться химичеокому анализу, его необходимо собрать с фильтра, либо смывая, либо используя растворитель в качестве фильтрующей среды. Возможно, требуется определить гранулометрический состав частиц, тогда решение проблемы связано с значительными техническими затруднениями. Если для определения размеров частиц будет использован метод жидкостной седиментации, или декантации, тогда фильтр можно прамьгвать седиментационной жидкостью. Однако как для воздушной, так и для жидкостной классификации и седиментации основным остается вопрос о сохранении размеров частиц и апромератов такими, какими они были в газовом потоке. [c.89]

    Эти трудности могут быть частично преодолены в том случае, когда один из продуктов жидкофазной реакции имеет достаточно высокое давление паров при температуре реакции. Тогда проба может быть отобрана из газовой фазы над раствором, при этом отпадает необходимость ее обработки перед анализом, не требуется устойчивость всех компонентов смеси в ходе анализа, часто удается ликвидировать или уменьшить воздействие агрессивных компонентов. Главный источник возможных ошибок — отставание изменений состава паров над раствором от изменений состава раствора. Возможность применения ГЖХ с отбором проб из газовой фазы определяется, таким образом, кинетикой массопередачн в реагирующей системе через границу раздела фаз. В условиях интенсивного перемешивания жидкости и турбулентного режима движения в газовой фазе скорость массопередачн для большинства органических соединений в идентичных условиях с точностью около 30% одинакова. Это позволяет вывести общие критерии использования отбора проб из газовой фазы. Можно показать, что он пригоден для реакций, время полупревращения которых не ниже 10 мин. Кроме того, необходимо, чтобы вещество, для которого снимается кинетика, обладало достаточным давлением пара. Количество вещества в пробе должно превышать порог чувствительности хроматографа [c.372]

    Методика обработки пробы воды. В платиновую чашку вливают 50 мл воды, если анализу подвергают конденсат, обескремненную ионитным способом воду, питательную воду парогенераторов высокого давления или дистиллят испарителей. При определении общего содержания кремниевой кислоты во всех других случаях (вода котловая, природная, известково-коагулированная, обескремненная магнезиальным способом, умягченная) в чашку помещают такое количество воды, чтобы содержание кремниевой кислоты в пробе не превысило 50 мкг ЗЮ " . После этого в чашку вводят 2 мл содового раствора и выпаривают жидкость досуха на кипящей водяной бане. Сухой остаток прокаливают в несветящемся конусе пламени газовой или бензиновой горелки. Можно пользоваться, например, пламенем пламяфотомера ВПФ-ВТИ, работающего на пропан-воздушной или светильной га-зо-воздущной смесях. Не следует пользоваться пламенем газов с кислородом, так как температура такого пламени выше точки плавления платины. Прокаливание нужно вести в несветящемся конусе пламени во избежание порчи платимы. После сплавления сухого остатка прокаливание прекращают и в остывшую чашку вливают 15—20 мл обескремненной дистиллированной воды. Нагревают жидкость на кипящей водяной бане в течение 5—7 мин, вводят в нее 4 мл 0,1 и. серной кислоты и переливают раствор в мерную колбу емкостью 50 мл. В чашку вновь вливают 15—20 мл дистиллированной обескремненной воды, нагревают ее 5—7 мин на кипящей водяной бане и переливают в ту же мерную колбу. При обработке содержимого чашки водой стремятся смочить всю ее внутреннюю поверхность, чтобы полностью растворить образовавшийся силикат натрия. Собранный в мерной колбе раствор, объем которого не должен превышать 40 мл, подготовлен для колориметрического определения общего содержания кремниевой кислоты, что выполняют по методике, изложенной ниже. [c.400]

    Передвижные лаборатории обладают рядом преимуществ перед стационарными постами, так как позволяют расширить контролируемую территорию при том же объеме измерений и обеспечить оперативный контроль точечных источников выбросов. При этом осуществляются отбор пробы из атмосферы или источника выбросов автоматическое определение концентрации загрязняющих веществ контроль скорости газового потока в газоходе и расчет валового выброса контроль метеопараметров обработка, регистрация и передача данных в центр обработки данных автоматическое управление входящими в состав станции техническими средствами. [c.217]

    Пробу (20—30 мг) тонкоизмельченного силиката помещают в платиновый тигель, смачивают 1—2 каплями воды, прибавляют 8—10 капель фтористоводородной кислоты и упаривают жидкость в вытяжном шкафу досуха. Если при этом разложение произошло неполно, то обработку повторяют до полного удаления кремневой кислоты в виде 3]р4. Остаток в тигле смачивают 2—3 каплями соляной кислоты (плотностью 1,19) и прибавляют приблизительно 1 мл воды и около 0,5 г кристаллической щавелевой кислоты. Смесь выпаривают досуха, затем осторожно нагревают на пламени газовой горелки (на сетке) до удаления щавелевой кислоты и остаток прокаливают (под тягой) при слабокрасном калении в течение 1—2 мин. [c.143]

    Системы ввода пробы без деления потока получают широкое распространение благодаря следующим преимуществам разбавленные экстракты природных и промышленных объектов могут дозироваться без дополнительной обработки анализироваться может широкий спектр веществ в полном удовлетворяющем требованиям газовой хротографии диапазоне летучести аппаратурное оформление достаточно простое. [c.147]

    К счастью, несколько иная методика измерения была разработана рядом хроматографистов, одним из которых был Г. Поллок, работающий в том же самом Научном центре в Эймсе. Основанный на газовой хроматографии, метод Поллока требует всего лишь нескольких микрограммов пробы и может быть применен к сложным смесям атаино-кислот. Первым этапом методики была этерификация аминокислот чистым (только одним энантиомером) 7 -2-бутанолом. Полученный эфир имел два асим метрических центра и мог существовать в виде-двух диастереомеров ЯЯ и где первая буква относится к конфигурации спирта, а вторая — к конфигурации аминокислоты. Затем эфиры были переведены в амиды обработкой трифторуксусным ангидридом для уменьшения полярности амино-группы и повышения летучести производных аминокислот, что позволило проводить успешное их хроматографирование. Используя капиллярные колонки, имеющие характеристики, приведенные на рис. 17-16, Поллок получил хроматограмму смеси диастереомерных производн ых аминокислот. Заметим, что каждая аминокислота дает пару пиков. Эксперименты доказали, что каждый пик отвечает одному из двух диастереомеров и что характеристики удерживания диастереомеров, которые отличаются только конфигурацией при асимметрическом углеродном атоме, как оказалось, были вполне достаточными, чтобы можно было проводить их разделение на газохр оматографической колонке. Таким образом, относительные количества Я- и 5-энантиомеров для некоторых отличающихся между собой аминокислот можно было определить хроматографированием,, сравнивая относительные высоты ЯЯ- и 5-пиков для каждого производного аминокислоты, причем для обнаружения требуется всего несколько нанограммов каждой аминокислоты. [c.585]

    LAB-X 3000 Oxford Instruments, США Настольного типа. Определяемые элементы от Mg до Сг (8 кВ-версия) и от Mg до и (25 кВ-версия). Источник возбуждения спектров рентгеновские трубки с палладиевым, родиевым, хромовым или титановым анодом, программируемые условия возбуждения. Детектор позиционно-чувствительный газовый пропорциональный счетчик, позволяет одновременно измерять линии 7 элементов одновременно. Камера образцов для жидких и порошкообразных проб — кюветы вместимостью 20 мл, для твердых проб — держатели диаметром от 26 до 40 мм, (крупность порошков не более 150 мкм). Программное обеспечение пакеты управляющих и расчетных программ, встроенный микропроцессор, 2 К8-232 порта. Дополнительные возможности пакет M8Wlndows РС для сканирования спектров и обработки данных. Типичная продолжительность анализа одной пробы от 10 до 200 с. [c.179]

    Качество воздуха. Обработка данных о температуре, давлении и относительной влажности Воздух рабочей зоны. Определение массовой концентрации окиси углерода. Метод с применением индикаторных трубок для быстрого отбора проб с прямой индикацией Воздух рабочей зоны. Определение массовой концентрации двуокиси азота. Метод с использованием индикаторных трубок для быстрого отбора проб с прямой индикацией Воздух рабочей зоны. Огфсделение винилхлорида. Метод газовой хроматографии с применением поглотительной колонки с активированным углем [c.541]

    ГХ2 Газовый хроматограф Кристалл-2000 с многоканальным одновременным детектированием компонентов пробы. Полностью автоматизирован, начиная от ввода пробы до обработки хроматографической информации. Персональный компьютер, интерфейс. В комплект входят капиллярные и наладочные колонки, термостат колонок, сменные аналитические модули с различными типами детекторов и инжекторов (ПИД, ЭЗД, ПФД, ТИД, ФИД, ДТП по индивидуальному заказу). Дополнительно термодесорбер, устройство для ввода проб, насадочные стеклянные колонки СКВ Хроматэк , НПФ МЕТА , г. Йошкар-Ола [c.555]

    В каждом опыте отбиралась проба газа, углеводородньш состав которого определялся на аппаратах низкотемпературной ректификации газовых смесей. Физико-химические константы, характеризующие свойства сырья и продуктов реакции, определялись по стандартным методикам и общесоюзным стандартам. Материальные балансы опытов подсчитывались но весу получаемых продуктов и анализу углеводородных газов. При обработке экспериментальных Данных выходы бензина даны с учетом [c.80]

    В качестве примера рассмотрим, как используется окись этилена. Этим соединением уже в течение многих лет обрабатывают пищевые продукты, с тем чтобы предотвратить рост грибов и плесени. Самым удачным методом определения концентрации окиси этилена, по-видимому, следует считать газовую хроматографию (ГХ). Авторы работы [35] разработали установку автоматизированного газохроматографического определения окиси этилена, которая обеспечивает надежный контроль за концентрацией газа в камере. В описанную в работе [35] систему входит компьютеризированный газовый хроматограф и автоматически действующий восьмиходовой кран. Устройство для ввода пробы в хроматограф соединено с шестью автоматическими пробоотборниками, расположенными таким образом, чтобы получаемая информация была достаточно надежной. Заложенная в компьютер программа контролирует готовность системы к проведению анализа, проводит обработку шести полученных хроматограмм, а также выдает результаты анализа. [c.35]

    Задачей всех методов количественного анализа является получение на основе аналитических сигналов (в газовой хроматографии — параметров пиков, Р,) информации о количествах отдельных веществ в пробе (т,) или их содержаний (С,), выраженных в массовых или объемных долях (объемное выражение чаще применяют для газообразных образцов) [47, 53]. Основные измеряемые параметры хроматографических пиков представляют собой их площади (Р,- = 5,), высоты P — h ) или произведения высот на времена удерживания (Рг = hitm), В большинстве методов расчеты проводят по сравнительно несложным формулам, поэтому при решении единичных задач применение специальных программ может оказаться нерациональным. Преимущества программируемых микрокалькуляторов проявляются только при обработке сравнительно больших массивов данных. Однако использование таких калькуляторов позволяет дополнять получаемые результаты оценками погрешностей, что резко повышает их информативность. [c.93]

    Сформулированные выше задачи определили и структуру книги, шесть первых глав которой посвяшены изложению основных химических методов (предварительная обработка анализируемых проб, кинетические методы, пиролитическая газовая хроматография, определение углеродного скелета, метод вычитания, применение химически селективных неподвижных фаз, элементный анализ), а последняя глава — решению одной из наиболее важных для аналитической химии в настояш ее время задач— определению примесей (глава VIII). Основное внимание в книге уделено работам, опубликованным в последнее десятилетие более ранние исследования отражены путем ссылок на опубликованные монографии и обзоры, где эти работы обсуждаются более подробно. [c.10]

    Максимальную информацию о структуре соединений, входящих в состав сложной смеси, получают, используя комбинацию хроматограф — масс-спектрометр высокого разрешения (рис. 13) [69]. Газовый хроматограф через гелиевый сепаратор присоединен к масс-спектрометру СЕС-21-110 с двойной фокусировкой и геометрией Маттауха — Герцога (разрешение 22 тыс. а. ё. м.). Точное измерение масс осуществляется с использованием калибровочного вещества (перфторалкан), которое непрерывно вводят в ионный источник параллельно исследуемому веществу. Использование фотопластинки имеет преимущество перед масс-спектрометрическим методом регистрации, так как в первом случае масс-спектр интегрируется во времени, что важно ввиду непрерывного изменения концентрации пробы, поступающей из хроматографа в ионный источник. Система позволяет делать до 60 снимков на одной пластинке. Автоматический микрофотометр с фотоумножителем после обработки фотопластинки выдает сигнал, который вводится в вычислительное устройство, преобразующее в цифровую форму выходные данные фотоумножителя, рассчитывает относительные расстояния центров линий и их плотность, превращает их в точные массы (с точностью до 0,002) и рассчитывает элементный состав. Запись полного ионного тока, попадающего на коллектор, введенный между электрическими и магнитными полями для отбора [c.41]


Смотреть страницы где упоминается термин Газовая проба, обработка: [c.438]    [c.605]    [c.113]    [c.547]    [c.547]    [c.263]   
Перегонка (1954) -- [ c.353 ]




ПОИСК







© 2025 chem21.info Реклама на сайте