Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Триацилглицерол липолиз

    СТИ раздела субстрата и происходит быстрый гидролиз триацилглицеролов. Колипаза связывается с поверхностью раздела системы желчная соль— триа-цилглицерол/вода, образуя высокоаффинный якорь для липазы. Полный гидролиз триацилглицеролов приводит к образованию глицерола и жирных кислот. Заметим, однако, что отщепление второй и третьей жирных кислот от триацилглицеролов происходит с возрастающей трудностью. Панкреатическая липаза в сущности специфична в отношении гидролиза первичных эфирных связей, т. е. связей в положениях 1 и 3 триацилглицеролов. Во время переваривания жира водная, или мицелляр-ная , фаза содержит смешанные дисковидные мицеллы и липосомы из желчных солей, насыщенных продуктами липолиза (см. рис. 15.34). Так как гидролиз вторичной эфирной связи в триацилглицероле затруднен, можно предположить, что перевариванию триацилглицерола предшествует удаление терминальных жирных кислот с образованием 2-моноацилглицерола. Поскольку последняя жирная кислота связана вторичной эфирной связью, ее удаление требует изомеризации в первичную эфирную [c.290]


    Ряд других гормонов ускоряет высвобождение свободных жирных кислот из жировой ткани и повышает их концентрацию в плазме путем увеличения скорости липолиза триацилглицеролов. К таким гормонам относятся адреналин, норадреналин, глюкагон, адренокортикотропный гормон (АКТГ), а- и Р-меланоцитстимулирующий гормон (МСГ), тирео-тропный гормон (ТТГ), гормон роста (ГР) и вазопрессин. Многие из этих гормонов являются активаторами гормон-чувствительной липазы. Для опти- [c.270]

    Триацилглицерол жировой ткани служит главным топливным резервом организма. После его гидролиза (липолиза) жирные кислоты освобождаются и поступают в систему кровообращения. Свободные жирные кислоты далее поглощаются больщинством тканей (за исключением мозга и эритроцитов), где они либо эстерифицируются, образуя ацилглицеролы, либо окисляются до СО2, выполняя роль топлива. В печени имеются еще два важных метаболических пути 1. Избыток триацилглицеролов, образующихся либо из жирных кислот, либо путем липогене- [c.170]

    Липаза пшеницы [8] также гидролизует преимущественно связи 1 и 3 триацилглицеролов. Этот фермент связан с клеточными структурами и не может быть обнаружен в гомогенатах. В водной среде для действия фермента необходимы ионы кальция Са++. В слабооводненной среде его активность пропорциональна активности воды. Ввиду этого лри хранении зерна и продуктов его помола может происходить липолиз. [c.291]

    Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. В настоящее время установлено, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани и таким образом играет важную роль в поддержании стационарного уровня цАМФ в тканях, а следовательно, и образовании активной формы липазы. Инсулин оказывает стимулирующее действие на процессы биосинтеза жирных кислот и триацилглицеролов, окисление глюкозы и образование пирувата. Все эти эффекты зависят от концентрации глюкозы и могут бьггь объяснены способностью инсулина увеличивать поступление глюкозы в клетки жировой ткани. [c.356]

    Выраженная гиперлипемия развивается при сахарном диабете. Обычно она сопровождается ацидозом. Недостаток инсулина приводит к снижению фосфодиэстеразной активности, что в конечном счете способствует активации липазы и усилению липолиза в жировых депо. Гиперлипемия при сахарном диабете носит транспортный характер, так как избыточный распад жиров на периферии приводит к повышенному транспорту жирных кислот в печень, где происходит синтез липидов. Как отмечалось ранее, при сахарном диабете и голодании в печени образуется необычно большое количество кетоновых тел (ацетоуксусная и р-гидроксимасляная кислоты), которые с током крови транспортируются из печени к периферическим тканям. Хотя периферические ткани при диабете и голодании сохраняют способность использовать кетоновые тела в качестве энергетического материала, однако ввиду необычно высокой их концентрации в крови органы не справляются с их окислением и, как следствие, возникает состояние патологического кетоза, т. е. накопление кетоновых тел в организме. Кетоз сопровождается кетонемией и кетонурией — повышением содержания кетоновых тел в крови и выделением их с мочой. Возрастание концентрации триацилглицеролов в плазме крови отмечается также при беременности, нефротическом синдроме, ряде заболеваний печени. Гиперлипемия, как правило, сопровождается увеличением содержания в плазме крови фосфолипидов, изменением соотношения между фосфолипидами и холестеролом, составляющем в норме 1,5 1. Снижение содержания фосфолипидов в плазме крови наблюдается при остром тяжелом гепатите, жировой дистрофии, циррозе печени и некоторых других заболеваниях. [c.357]


    Свободные жирные кислоты (неэстерифициро-ванные жирные кислоты) поступают в плазму крови в результате липолиза триацилглицеролов, катализируемого липазой в жировой ткани, или образуются при действии липопротеинлипазы на триацилглицеролы плазмы крови в период перехода их в ткани. В плазме крови СЖК связаны с сывороточным альбумином, и их концентрация варьирует от 0,1 до [c.259]

    Триацилглицеролы, находящиеся в жировой ткани, постоянно подвергаются липолизу (гидролизу) и вновь эстерифицируются (рис. 26.8). Эти превращения не являются прямой и обратной реакциями одного процесса. Они протекают по разным путям с участием различных реактантов и ферментов. Многие метаболические, гормональные и связанные с питанием факторы, регулирующие процессы метаболизма в жировой ткани, оказывают действие либо на процессы эстерификации, либо на процессы липолиза. Суммарный результат этих двух процессов опреде- [c.268]

    Триацилглицеролы гидролизуются гормон-чувствительной липазой до свободных жирных кислот и глицерола. Этот фермент отличается от липопротеинлипазы, катализирующей гидролиз липопротеиновых триацилглицеролов перед их поглощением внепеченочными тканями (см. с. 262). Поскольку жировая ткань практически не способна утилизировать глицерол, он диффундирует в плазму крови, откуда поступает в такие ткани, как печень или почки, в которых подвергается дальнейшим превращениям благодаря наличию активной глицеролкиназы. Свободные жирные кислоты, образовавшиеся в процессе липолиза, превращаются в жировой ткани в ацил-СоА под действием ацил-СоА-синтетазы, а затем вновь эстерифицируются глицерол-З-фосфатом с образованием триацилглицеролов. Таким образом, в жировой ткани осуществляется непрерывный цикл, включающий липолиз и эстерификацию. Однако если скорость липолиза превышает скорость эстерификации, в жировой ткани накапливаются свободные жирные кислоты, которые затем диффундируют в плазму, где связываются сывороточным альбумином в результате уровень свободных жирных кислот в плазме увеличивается. Свободные жирные кислоты плазмы служат одним из основных источников энергии для многих тканей. [c.268]

    Выделяют три стадии, на которых соответствующие факторы могут осуществлять регуляцию кетогенеза. (1) Кетоз не возникает in vivo до тех пор, пока не происходит увеличения уровня свободных жирных кислот в крови, образующихся в результате липолиза триацилглицерола в жировой ткани. Жирные кислоты являются предшественниками кетоновых тел в печени. Как у сытых, так и у голодных животных печень обладает способностью поглощать до 30% и более свободных жирных кислот, проходящих через нее, поэтому при высоких концентрациях этих кислот поглощение их довольно значительно. Следовательно, для регуляции кетогенеза важны факторы, контролирующие стадию мобилизации свободных жирных кислот из жировой ткани (рис. 28.6). (2) Возможны два пути превращения свободных жирных кислот после их поступления в печень и перехода в активные ацил-СоА-производные, а именно эстерификация с образованием преимущественно триацилглицеролов и фосфолипидов и р-окисление до аце-тил-СоА. (3) В свою очередь ацетил-СоА может либо окисляться в цикле лимонной кислоты, либо вступать на путь кетогенеза, образуя кетоновые тела. [c.292]

    Можно было думать, что у людей с дефектом данной трансферазы или недостаточностью карнитина должно быть нарушено окисление жирных кислот с длинной цепью. Такое нарушение действительно было обнаружено у идентичных близнецов, у которых с раннего детства наблюдались болезненные мышечные судороги. Боли снимались при голодании, упражнениях и при потреблении богатой жиром пищи во всех этих трех состояниях основным процессом, обеспечивающим энергию, является окисление жирных кислот. Ферменты гликолиза и гликогенолиза не отличались от нормы. Липолиз триацилглицеролов также был в пределах нормы, о чем свидетельствовало повышение концентрации неэтерифицированных жирных кислот в плазме после голодания. Анализ биоп-сийного материала мышечной ткани показал, что синтетаза СоА-производных жирных кислот (ацил-СоА) с длинной цепью была полностью активна. Кроме того, нормально протекал метаболизм жирных кислот со средней длиной цепи ( g и Сю). Известно, что для проникновения в митохондриальный матрикс ацил-СоА со средней длиной цепи карнитина не требуется. Описанный случай отчетливо показывает, что нарушение перехода метаболита из одного клеточного компартмента в другой может явиться причиной болезни. [c.143]


Смотреть страницы где упоминается термин Триацилглицерол липолиз: [c.290]    [c.285]   
Биохимия человека Т.2 (1993) -- [ c.270 , c.271 , c.292 ]

Биохимия человека Том 2 (1993) -- [ c.270 , c.271 , c.292 ]




ПОИСК







© 2025 chem21.info Реклама на сайте