Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос генов с клетками

    В последние годы стало очевидным, что изменчивость как эу-, так и прокариотических организмов связана не только с точечными мутациями, хромосомными перестройками или описанными рекомбинационными событиями, но и с подвижными, или мобильными, генетическими элементами — сравнительно автономными сегментами ДНК, способными встраиваться в геном клетки-хозяина и вырезаться из него. К мобильным элементам можно отнести и некоторые вирусы — в этом случае возможно перемещение не только в пределах генетического материала одной клетки, но и между клетками (см. гл. ХП1). У бактерий перенос генетической инфор.мации между клетками могут осуществлять не только вирусы, но и плазмиды многие из которых могут встраиваться в различные участки генома клетки-хозяина и поэтому тоже могут быть отнесены к мобильным эле.ментам. Плазмиды и мобильные генетические элементы играют существенную роль в эволюции бактерий. [c.110]


    Следующий этап генетической инженерии—перенос генов в клетку — осуществляется тремя способами трансформацией (перенос генов посредством выделенной из клеток и освобожденной от примесей ДНК), трансдукцией (перенос генов посредством вирусов) и гибридизацией клеток, полученных из разных организмов (высших животных, микроорганизмов и др.) (рис. 13.7, 13.8). Заключительный этап этих экспериментов сводится к адаптации введенного гена в организме хозяина, но он почти не зависит от искусства экспериментатора. [c.496]

    Физические методы переноса генов в растительные клетки [c.379]

    После того как были установлены молекулярные основы трансформации бактерий (переноса генов из одного штамма в другой), у ученых появилась надежда, что аналогичный механизм — введение нормальных генов в дефектные соматические клетки — можно будет использовать для лечения наследственных заболеваний человека. Перспективы генной коррекции соматических клеток стали более реальными в 1980-х гг. к этому времени были [c.484]

    Ретровирусы активно инфицируют реплицирующиеся клетки. Для переноса генов в интенсивно растущие клетки-мишени последние обрабатывают очищенными частицами упакованного [c.489]

    Обычно о присутствии плазмид в бактериальной клетке судят по проявлению определенных признаков, к которым относится устойчивость к отдельным лекарственным препаратам, способность к переносу генов при конъюгации, синтез веществ антибиотической природы, способность использовать некоторые сахара или обеспечивать деградацию ряда веществ. Из перечисленного выше видно, что плазмиды делают возможным существование организмов в более широком диапазоне условий внешней среды, т.е. действуют как факторы адаптации. Большую группу составляют плазмиды с нерасшифрованными функциями такие плазмиды выявляют с использованием физико-химических методов. [c.144]

    Выше мы рассмотрели организацию генетического аппарата прокариот, осуществляющего передачу генетической информации от одного поколения к следующему, т.е. по вертикали , обратив внимание на такие его черты, как стабильность и точность функционирования. Однако стабильность генетического аппарата не абсолютна и при всей надежности изменения являются его неотъемлемым свойством. Для прокариот характерна большая способность к генетическим изменениям, являющимся результатом мутаций, а также развития путей горизонтального переноса генов между бактериальными клетками. [c.153]

    Увеличившийся в размере плазмидный вектор, содержащий ген, предназначенный для переноса в клетку Е.соИ [c.986]


    Направленный перенос генов из клетки в клетку. Эксперименты по [c.456]

    Процесс переноса. Если смешать популяцию клеток Hfr с избытком клеток F то почти каждая клетка Hfr найдет себе партнера F я будет с ним конъюгировать. Из такой смеси через определенные промежутки времени брали пробы и, сильно встряхивая их в смесителе, насильственно разъединяли партнеров. Затем пробы переносили на чашки с агаром для выделения рекомбинантов. И наконец, исследовали рекомбинантные штаммы, чтобы выяснить, какие гены были переданы донорами клеткам-реципиентам. Исследования показали, что каждый ген передается в совершенно определенный момент времени после начала конъюгации (рис. 15.16). Временная последовательность переноса генов соответствовала порядку их расположения в бактериальной хромосоме, установленному в результате генетического анализа. Это значит, что любой штамм Hfr представляет собой гомогенную популяцию, все [c.459]

    Генетическая карта. В результате применения описанного выше метода прерванной конъюгации, позволяющего выяснить временную последовательность переноса генов из клетки-донора, можно составить карту расположения генов в бактериальной хромосоме (рис. 15.17). Скорость их переноса в течение всего процесса остается постоянной. Моменты перехода внутрь клетки-реципиента позволяют судить о расстояниях между ними в хромосоме. При использовании этого метода не удается учитывать различия менее одной минуты. Для более тонкого картирования может служить анализ сцепления при трансдукции (переносе генов фагом). [c.460]

    Перенос генов при посредстве фактора F. Интеграция (включение) фактора F в бактериальную хромосому обратима, F-фактор может быть высвобожден из хромосомы, и тогда клетка Hfr становится клеткой (рис. 15.16). Этот процесс вырезания (эксцизии, выключения) происходит примерно с той же частотой, что и интеграция. При правильной эксцизии разрыв происходит в том же самом месте, что и при интеграции. В редких случаях он происходит где-то очень близко к этому месту, и в результате соседний участок ДНК остается присоединенным к фактору F. Этот фактор F, содержащий небольшой фрагмент [c.460]

    Предпосылкой успешного переноса генов при специфической трансдукции (в отличие от неспецифической) является интеграция фага в геном клетки-хозяина. [c.466]

    Эволюция эукариот. Эукариотические клетки, видимо, возникли лишь тогда, когда в атмосфере появился кислород. Все эукариоты, за очень малым исключением,-аэробные организмы. Прокариоты занимали много различных экологических ниш. Выработка разнообразных типов метаболизма у прокариот была, по-видимому, обусловлена простой структурой клетки, высокоразвитыми системами регуляции, быстрым ростом и наличием нескольких механизмов переноса генов. На пути дальнейшей эволюции прокариот стояли непреодолимые трудности, связанные прежде всего с малыми размерами генома, его гаплоидным состоянием и малой величиной клеток. Новая окружающая среда с аэробными условиями позволяла получать больше энергии, но для ее использования нужны были более крупные клетки, широкие возможности структурной дифференцировки и соответственно во много раз больший [c.521]

    Процесс конъюгации, т. е. процесс переноса генов от клеток Hfr к клеткам F , можно остановить в любой момент интенсивным перемешиванием культуры клеток в гомогенизаторе Уоринга. В образовавшихся зиготах присутствует вся хромосома клетки-реципиента и часть хромосомы клетки-донора, в чем можно убедиться, исследуя фенотипы этих зигот (см. стр. 476). Эти эксперименты позволяют установить последовательность [c.481]

    Некоторые бактериальные плазмиды (обычно достаточно крупные) способны передаваться из одной клетки в другую, иногда даже в клетку другого вида бактерий (как правило, не слишком далекого). Такие плазмиды называются трансмиссивными, и их свойства определяются группой генов, ответственных за перенос (гены 1га). Трансмиссивные плазмиды кодируют специальные ворсинки, половые пили, которые появляются на поверхности клеток, содержащих плазмиды, и способны специфически связываться с поверхностью бесплазмидных клеток. Последующее сокращение пиля притягивает клетки друг к другу и. между ними образуется мостик, через который плаз.мидная ДНК может передаться в новую клетку. га-Гени разных плазмид часто сходны между собой. [c.111]

    Механизм передачи ДНК из клетки в клетку состоит в том, что специальный белок узнает определенную последовательность, имеющуюся у трансмиссивных и мобилизуемых плазмид и называемую ориджином переноса, вносит в эту последовательность одноцепочечный разрыв и ковалентно связывается с его 5 -концом. Затем цепь ДНК, с которой связан белок, переносится в клетку-реципиент, а неразорванная комплементарная цепь остается в клетке-доноре. Весь этот процесс осуществляют белки, кодируемые га-генами трансмиссивной плазмиды, в частности один из этих генов кодирует специальную хеликазу, которая в АТР-зависимой реакции разделяет переносимую в реципиент и остающуюся в доноре цепи ДНК. Клеточный аппарат синтеза ДНК достраивает одиночные цепи и в доноре и в реципиенте до дуплексов. Белок, сидящий на 5 -конце перенесенной цепи, видимо, способствует замыканию плазмиды в реципиентной клетке в кольцо (таким образо.м, этот белок напоминает по свойствам топоизомеразы 1-го типа и родственные ферменты, например А-белок фага ФХ174 см. гл. ХП1/. [c.111]


    Перенос генов в растительные клетки, так же как в клетки животных, и их встраивание в геном растений (трансформация) осуществляются главньпй образом благодаря специфическим структурам — векторам. [c.145]

    Начиная с 1970 г. стали появляться серьезные работы по изучению генов азотфиксации и их переносу в клетки Klebsiella pneumoniae [c.151]

    Среди них присутствие в клетках клубеньков легоглобина — гем-содержащего белка, который встраивается в мембрану бактероида (увеличенная в размере бактериальная клетка, характеризующаяся наибольшей способностью к фиксации азота) и регулирует поступление кислорода. Легоглобин кодируется в геноме растительной клетки-хозяина, но его синтез начинается только после проникновения бактерий в эту клетку. У цианобактерий механизм защиты нитрогеназы от кислорода иной. Азотфиксация идет в гетероцистах, а фотосинтез — в обычных клетках. Поэтому кислород, вьщеляющийся в процессе фотосинтеза, не ингибирует фиксацию азота. Таким образом, введение только //-генов в какую-то растительную клетку не решает проблемы. Если нитрогеназа будет синтезироваться в этой клетке, в частности в клетках злаков, то она разрушится под действием кислорода, присутствующего в клетке. Кроме того, сама клетка, в которую переносят гены азотфиксации, может бьггь не приспособлена к синтезу и расходованию большого количества энергии, которое требуется для фиксации азота. [c.153]

    До появления технологии рекомбинантных ДНК одним из способов переноса генетического материала из одного микроорганизма в другой была конъюгация. Такой механизм обеспечивал перенос из клетки в клетку целых плазмид. А. М. Чакрабарти, проводивший эксперименты по переносу плазмид- разрушительниц , т. е. плазмид, кодирующих все ферменты пути биодеградации определенного соединения, сконструировал штамм, содержащий несколько таких плазмид. Кодируемые плазмидными генами ферменты каждого катаболического [c.289]

    Эффективность аденовирус-опосредованно-го переноса генов можно повысить, если сконструировать вирус, проникающий преимущественно в определенную клетку-мищень. Для этого в ген, ответственный за образование нитей аденовируса, следует включить последовательность, кодирующую домен белка, который связывается с клеточноспецифичным рецептором. [c.496]

    Многочисленные данные подтверждают, что аппарат Гольджн играет важную роль в системе, с помощью которой геном клетки регулирует многие аспекты развития клеток н их объединения. Можно считать доказанным [21], что большая часть входящих в состав матрикса полисахаридов синтезируется в аппарате Гольджи, а затем переносится в новообразующиеся стенки. Время от начала синтеза полисахарида в тельцах Гольджи до его отложения в клеточной стенке составляет 3—7 мин [38]. Перенос синтезированных молекул ГМЦ от тельца Гольдл<и к клеточной стенке осуществляется специальными органеллами в виде мелких пузырьков. [c.26]

    В связи с простотой строения оказалось легко выделять плазмиды из клеток, вставлять в них с помощью рестриказ и лигаз другие куски ДНК и снова переносить в клетки. Эта процедура получила название клонирования и позволила перейти к главной цели генной инженерии — получить в клетках одного вида белки на базе генов другого вида. Первым круп- [c.562]

Рис. 146. Перенос гена (а) из хромосомы (б) Es heri hia oU в растение (5) с помощью Т-ДНК (в) Ti-плазмиды (г) А.tumefa iens (2,3) в ядерную ДНК (д) растительной клетки (4). Рис. 146. <a href="/info/97684">Перенос гена</a> (а) из хромосомы (б) Es heri hia oU в растение (5) с помощью Т-ДНК (в) Ti-плазмиды (г) А.tumefa iens (2,3) в ядерную ДНК (д) растительной клетки (4).
    Токсические белковые кристаллы, образующиеся в клетках Вас. thuringiensis на основе матричного синтеза, убивают личинок листогрызущих насекомых. Поэтому генноинженерная разработка по переносу гена бактериального токсина в геном табака увенчалась успехом в 1987 г. Экспрессия такого гена сопровождалась [c.519]

    Разные штаммы Hfr, вьщеленные независимо друг от друга из одного и того же штамма различаются по двум главным признакам роль начала играет у каждого штамма иная точка хромосомы и каждый штамм отличается своей специфической последовательностью переноса генов. Результаты экспериментов согласуются с представлением о том, что фактор F при интеграции (т.е. при переходе в состояние Hfr) может включаться в бактериальную хромосому в одном из примерно 20 возможных генных локусов. При переносе бактериальная ДНК реплицируется, начиная от места включения фактора F, и вновь синтезированная цепь, двигаясь 5 -концом вперед, проталкивается внутрь Кяетки-реципиента. Вслед за этим процессом переноса в клетке-реципиенте происходит гомологичная рекомбинация между донорской ДНК и собственной ДНК реципиента. Взаимоотношения между клеткой F , клеткой и клетками Hfr представлены на рис. 15.16. [c.460]


Смотреть страницы где упоминается термин Перенос генов с клетками: [c.300]    [c.300]    [c.257]    [c.257]    [c.258]    [c.269]    [c.287]    [c.295]    [c.191]    [c.379]    [c.501]    [c.145]    [c.500]    [c.512]    [c.107]    [c.72]    [c.315]    [c.333]   
Иммунологические методы исследований (1988) -- [ c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Геном клетки



© 2025 chem21.info Реклама на сайте