Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

хроматин геном

    Кодирующая последовательность ГP-N детерминирует аминокислотную последовательность циркулирующего ГР этот ген чувствителен к ДНКазе 1, что говорит о его локализации в зоне активного хроматина . Ген ГР-У, если он экспрессируется, кодирует белок, отличающийся от ГР по 13 аминокислотам. Ген устойчив к ДНКазе I и поэтому может быть неактивным. Ген ГР-У обнаруживается у больных, у которых отсутствует ген ГP-N (наследственная недостаточность ГР) поскольку в таких случаях регистрируется отсутствие гормона роста, ген ГР-У либо является молчащим, либо образует неактивную молекулу ГР. Первое более вероятно, так как [c.173]


    Развитие многоклеточных эукариотических организмов основано на способности клеток передавать в ряду поколений активное или, наоборот, репрессированное состояние гена. Наследование состояния гена приводит в конечном итоге к образованию дифференцированной ткани, состоящей из клеток, в которых лишь небольшая часть генов активирована на фоне репрессии основной части генома. Исследование молекулярных механизмов, обеспечивающих наследование активного или неактивного состояния гена в ряду клеточных поколений, представляется чрезвычайно важным. По-видимому, в основе этих механизмов лежат не только программированные взаимодействия белков и ДНК, обеспечивающие наследуемую локальную организацию хроматина, но и процессы метилирования ДНК. Метилирование можно расс.матривать как особый механизм контроля транскрипции, существующий наряду с механизмами, основанными на взаимодействиях между цис-действую-щими регуляторными элементами и факторами транскрипции. [c.218]

    В конденсированном состоянии каждый домен хроматина представляет собой, вероятно, компактную глобулу, которая занимает в метафазной хромосоме четко определенное положение для каждого участка ДНК. При локализации определенных генов в метафазной хромосоме они всегда обнаруживаются в одном и том же ее участке. Регулярная организация метафазных хромосом подтверждается также тем, что окрашивание их различными красителями дает стандартную картину в виде чередующихся полос более и менее интенсивной окраски. Полученная при окрашивании характерная исчерченность является надежным тестом для идентификации отдельных хромосом. [c.248]

    В то же вре.чя многие регуляторные белки эукариот, как и у прокариот, составляют ничтожную долю всех белков. Регуляторные последовательности эукариотических генов иногда удалены от промотора на значительное расстояние (энхансеры, см. гл. X, раздел 2) и расположены впереди или позади него. Эго затрудняет поиск белков, узнающих определенные последовательности ДНК-ДИК в хроматине свернута в спираль с шагом около 80 и.о., и сайт узнавания может быть составлен из фрагментов разных участков, разнесенных в первичной структуре на эту величину. Поэтому изучение и моделирование механизма узнавания ДНК в хроматине требуют разработки совершенно новых подходов. [c.250]

    Имеются различия и в состоянии ДНК транскрибируемых и не-транскрибируемых участков генома. Так, неактивная в транскрипции ДНК в большей мере метилирована, в то время как содержание 5-метилцитозина существенно меньше в транскрибируемых генах и особенно в их регуляторных последовательностях. При действии топоизомеразы I на неактивный хро латин количество супервитков не меняется, что свидетельствует о том, что эта ДНК находится в релаксированном состоянии, в ней нет торзионных напряжений, которые бы снимались под действие.м топоизомеразы I. Возможно, Что в активном хроматине возникают такие торзионные напряжения, которые облегчают связывание регуляторных белков и работу РНК-полимеразы. [c.254]


    Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме) во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными. [c.538]

    Оказывается, что расщепление до кислоторастворимого состояния только 10% общей ДНК приводит к исчезновению более 50% ДНК активных генов. Следовательно, можно предположить, что при таком расщеплении происходит преимущественная деградация активных генов. Исчезновение активных генов можно подтвердить прямым сравнением судьбы двух генов, активного и неактивного. На рис. 30.8 показано, что происходит с генами (3-глобина и с геном овальбумина в хроматине, выделенном из куриных эритроцитов (в этом хроматине гены глобинов экспрессируются, а ген овальбумина неактивен). Рестрикционные фрагменты, соответствующие генам (3-глобина, быстро теряются, тогда как фрагменты, представляющие ген овальбумина, расщепляются незначительно. (Ген овальбумина фактически деградирует с той же скоростью, что и вся ДНК, хотя это и не следует из показанного на рисунке анализа ранних стадий реакции методом блотт-гибридизации. Противоположная картина наблюдается в ткани яйцевода, в которой преимущественно деградирует ген овальбумина, тогда как глобиновые гены устойчивы, как весь остальной хроматин. Это коррели- [c.382]

Рис. 10-40. Изменения хроматина в активных генах. А. Структура хроматина гена лизоцима в яйцеводе курицы, где этот ген активен. Как показано, область деконденсированного активного хроматина (определяемая по чувствительности к ДНКазе) содержит 24 ООО нуклеотидных пар. Рис. 10-40. <a href="/info/1890500">Изменения хроматина</a> в <a href="/info/170859">активных генах</a>. А. <a href="/info/1413941">Структура хроматина гена</a> лизоцима в <a href="/info/567571">яйцеводе курицы</a>, где этот ген активен. Как показано, область деконденсированного <a href="/info/1339661">активного хроматина</a> (определяемая по чувствительности к ДНКазе) содержит 24 ООО нуклеотидных пар.
    Принципы действия энхансеров, способных оказывать свое влияние на значительном расстоянии (более чем тысячи нуклеотидных пар) и вне зависимости от ориентации по отношению к старту транскрипции, не выяснены. Короткие нуклеотидные блоки могут служить центрами связывания специфических ядерных белков, выступающих как транс-действующие факторы. Сила энхансера, вероятно, может зависеть от числа таких блоков (модулей). Обсуждаются следующие два основных механизма действия энхансеров. Считается, что функциональные участки генома, содержащие один или несколько генов, образуют длинные петли, включающие десятки тысяч нуклеотидных пар ДНК. Высказано представление, что петли закреплены в матриксе клеточного ядра и могут быть сверхспира-лизованы. В состав матрикса входит топоизомераза И, по-видимому, определяюш,ая топологию петли ДНК (см. гл. ХП), В таком случае взаимодействие энхансера с бе.1ками может менять конформацию всей петли, включая и удаленный от энхансера участок ДНК, в результате чего в составе петли изменяется локальная структура хроматина и облегчается транскрипция гена (рис. 112,6). Более вероятно, что влияние энхансера, связанного с белком, определяется его непосредственным взаи.чодействием с РНК-полимеразой и другими факторами транскрипции в процессе инициации- Такое взаимодействие может осуществляться благодаря сгибанию молекулы ДНК, что создает возможность непосредственного контакта районов промотора и удаленного от него энхансера, связанных со специфическими белками (рис. И2, в). [c.204]

    Механизм действия метилирования не раскрыт. Модифицированная ДНК может оказывать влияние на локальную структуру в составе хромосомы. Вероятно, метилирование отдельных сайтов в составе гена меняет характер взаимодействия с белками и структуру хроматина. Действительно, сайты метилирования в отдельных исследованных генах совпадают с так называемыми гиперчувствитель-ными к нуклеазам сайтами в составе хроматина, наличие которых отражает активное состояние гена или его готовность к активации (см. гл. ХП). Метилирование может влиять и на структуру ДНК-Например, метилирование цитозина в составе синтетических поли-дезоксинуклеотидов с повторяющейся комплементарной последовательностью типа d( pG) -d(Gp ) способствует их переходу в Z-конформацию ДНК. [c.220]

    Разработана остроумная генетическая система, позволяющая заменять в клетках дрожжей нормальные гены на их модифицированные аналоги с помощью генно-инженерных манипуляций. В результате в клетке синтезируются измененные белки. Таким образом было показано, что гистоны Н2А и Н2В дрожжей можно лишить 10—30 концевых аминокислот и что это не влияет на сборку нуклеосом и структуру хроматина и вообще на жизнеспособность клеток. Это особенно странно, если учесть высокую консервативность аминокислотных последовательностей гистонов. Возможно, Ы-концевые участки нуклеосомных гистонов необходимы не для сборки нуклеосом, а для другой цели, например для транспорта гнстонов из цитоплазмы в ядро. [c.241]


    Деконденсацию хроматина прн транскрипции можно также наблюдать с помощью светового микроскопа на политенных хромосомах дрозофилы. Такие хромосомы содержатся во многих тканях личинок насекомых. Политенные хромосомы дрозофилы состоят примерно из 1000 нитей ДНК, лежащих рядом друг с другом таким образом, что гомологичные участки соседствуют и образуют поперечные полоски. Политенные хромосомы соответствуют интерфазному хроматину. Каждый функциональный домен в политенной хромосоме представлен Б виде диска, содержащего плотно-упакованную ДНК. Диски разделены менее плотными междисковыми участками. Чередование дисков и междисков образует характерную строго постоянную картину, причем крупные генетические перестройки проявляются в видимых изменениях хромосом. В ходе индивидуального развития личинок картина дисков и междисков несколько меняется. Но особенно ярко изменения транскрипционной активности хроматина политенных хромосом проявляются при индукции генов. Такая индукция достигается, например, при нагревании личинок (так называемый тепловой шок) или при введении гормона насекомых экдизона. При активации транскрипции происходит резкая деконденсация хроматина в определенных дисках и образуются так называемые пуфы. В пуфах можно обна- [c.252]

    Важный вопрос организации хроматина касается судьбы нуклеосом при транскрипции. Электронная микроскопия интенсивно транскрибирующихся участков хроматина, например рибосомных генов, ясно показывает, что нуклеосом на них нет даже в тех случаях, когда между молекулами РНК-полимеразы, движущимися одна за другой по гену, виден промежуток. Необходимо отметить, Что регуляция активности рибосомных генов осуществляется в клетке путем изменения числа работающих генсв, но не интенсивности транскрипции. Однако промоторы рнбосомных генов всегда находятся в активной конформации (свободны от гистонов). [c.254]

    Эта модель структурной динамики транскрипционно активного хроматина не является единственной. Так, в активно транскрибируемом хроматине рибосомных генов гриба Physarum обнаружены развернутые нуклеосомы, в которых гистоны остаются связанными в частично или полностью линеаризованной ДНК нуклеосомы. Зга модель предполагает, что в процессе транскрипции происходит линеаризация ДНК, но РНК-полимераза не смещает молекулы гистонов с транскрибируемых участков. Напомним, что регуляторный белок TFHIA генов 5S РНК шпорцевой лягушки прочно связывается с регуляторным участком, лежащим в транскрибиру--емой области, и не диссоциирует при прохождении РНК-полимеразы III. [c.256]

    С механизмом клеточной дифференцировки связан интересный вопрос сохраняется ли на уровне структуры хроматина память об активном или неактивном состоянии гена при клеточном делении и транскрипции При клеточном делении хроматин, видимо, сохраняет особенности своей структуры, например гиперчувстви-тельные участки в хроматине некоторых генов сохраняются в метафазных хромосомах в тех же местах, что и в интерфазном хроматине. Очевидно, это определяется тем, что регуляторные белки, связанные с промоторными участками генов, ассоциированы с ДНК и в составе метафазной хромосомы. Однако судьба регуляторных белков в процессе репликации ДНК неизвестна. [c.258]

    Как уже упоминалось, ПК в качестве лигандов могут обладать как групповой специфичностью (для белков хроматина, факторов управления трансляцией, нуклеаз и др.), так и индивидуальной (для индивидуальных мРНК, белков-регуляторов транскрипции и др.). Во втором случае на аффинном сорбенте должны быть закреплены вполне определенные участки генома. Это стало возмолшым после создания способов отбора и наработки в достаточных количествах строго идентичных фрагментов ДНК методами генной инженерии. В последнее время возникла еще одна область использования иммобилизованных НК — в качестве праймеров матричного синтеза. Эти приложения предъявляют разные требования к характеру фиксации НК на матрице. В первом случае расположение точек закрепления на молекуле НК может быть произвольным, во втором определенные и достаточно протяженные участки полинуклеотидной цепи должны быть свободны для комплементарного взаимодействия, а в третьем закрепление НК на матрице желательно осуществить лишь по одному определенному концу молекулы. Что же касается возможности реакций с активированными матрицами, то вдоль всей молекулы НК во множестве располагаются химически эквивалентные группы аминогруппы нуклеиновых оснований, гидроксилы сахаров и др. В особом положении находится только концевой остаток фосфорной кислоты или сахара. [c.387]

    Действие большей части гормонов осуществляется по одному из двух механизмов. В одном случае гормон присоединяется к рецептору на клеточной мембране. Например, глюкагон, адреналин и АКТГ связываются на поверхности клеток и стимулируют синтез сАМР (гл. 5, разд. В, 5), что в свою очередь запускает процесс химической модификации белков. Вполне вероятно, что стимуляция синтеза простагланди-нов (гл. 12, разд. Е, 3) осуществляется именно таким образом. Второй механизм действия гормонов связан с их присоединением к цитоплазматическим рецепторам, что в конечном счете приводит к влиянию на про цесс транскрипции РНК. Стероидные гормоны, тироксин и гормон роста (соматотропин) относятся к числу соединений, которые действуют, по-видимому, именно таким образом. Рецепторы стероидных гормонов, локализованные в цитоплазме, прочно связывают поступающие в клетку стероиды [2]. После этапа активирования комплекс гормон — рецептор проникает в ядро, где связывается с определенными участками хроматина (связывающими местами), причем в последнем процессе, по-видимому, принимают участие некоторые негистоновые белки [3]. Химические основы указанных взаимодействий еще не выяснены. Можно лишь сказать, что в конечном итоге это приводит к инициированию транскрипции отдельных генов в клетках, чувствительных к гормонам [За]. [c.316]

    В системе регуляции активности генов у эукариот имеется дополнит, уровень, отсутствующий у бактерий, а именно-перевод всех нуклеосом (повторяющихся субъединиц хроматина), входящих в состав транскрипционной единицы, в активную (деконденсированную) форму в тех клетках, где данный ген должен быть функционально активен. Предполагается, что здесь задействован набор специфических Р. б., не имеющих аналогов у прокариот. Эти белки не только узнают специфич. участки хроматина (или,ДНК), но и вызы-427 [c.218]

    ХРОМОСОМЫ, структурные элементы клеточного ядра, являющиеся носителями генов и определяющие наследственные св-ва клеток и организмов. Способны к самовоспроизведению, обладают структурной и функциональной ивдиввдуаль-ностью и сохраняют ее в ряду поколений. Основу X. составляет нуклеопротеид хроматин. Запись наследственной информации в X. обеспечивается строением ДНК, ее генетическим кодам. Белки, содержащиеся в X., участвуют в сложной упаковке ДНК и регуляции ее способности к синтезу РНК - транскрипции. [c.322]

    Хромосомная ДНК, как правило, сверхспирализована. Как это было впервые показано в лаборатории Георгиева в 1982 г. (Лучник и Бакаев), сверхспирализация ДНК играет важную роль в биологической активности генома. Различные нуклеотидные последовательности в молекуле ДНК конкурируют за упругие витки и энергию сверхспирализации, поглощая их в конформационных переходах. Было установлено напряженное состояние ДНК в транскрипционно-активном хроматине вируса 8У40. Конформационные изменения, связанные с этими напряжениями, имеют прямое значение для регуляции генов. Сверхспирализация генома изменяется при дифференцировке, старении и элока-чественной трансформации клеток. [c.257]


Смотреть страницы где упоминается термин хроматин геном: [c.477]    [c.251]    [c.251]    [c.253]    [c.253]    [c.255]    [c.136]    [c.104]    [c.217]    [c.598]    [c.218]    [c.389]    [c.602]    [c.251]    [c.251]    [c.253]    [c.253]    [c.255]   
Искусственные генетические системы Т.1 (2004) -- [ c.15 , c.23 ]




ПОИСК







© 2025 chem21.info Реклама на сайте