Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

клеток связывание клетками иммунной систем

    Сложность иммунного ответа связана отчасти с тем, что другие клетки, в особенности Т-лимфоциты и макрофаги, изменяют реакцию В-клеток на антиген. В отсутствие активирующего действия антигена процесс деления большей части лимфоцитов заторможен. Т-клетки, а они представлены по меньшей мере тремя типами, могут либо стимулировать клеточное деление после связывания антигена, либо продолжать подавлять его. Видимо, торможение имеет место в том случае, когда иммунная система узнает о наличии в антигене детерминанты, присутствующей также на поверхностях собственных клеток организма. Совершенно очевидно, что различение своих и чужих антигенов чрезвычайно важно для иммунной системы. Аналогично тому как нервная система находится обычно в заторможенном состоянии и только иногда по ней осуществляется проведение потока импульсов, так и иммунная система в основном ингибирована и лишь в определенных случаях развивается клон плазматических клеток. Торможение иммунологической активности обусловлено отчасти синтезом антител против других антител, а именно против антител, функционирующих в качестве рецепторов на поверхности В-клеток. [c.366]


    Такие соединения входят в состав иммунной системы. Их функции - защита организма от токсических и болезнетворных соединений, обезвреживание и выведение их из организма. Эти белки образуют антитела, которые синтезируются клетками плазмы - лимфоцитами, их называют В-клетками. Появление определенного антигена (антигеном может быть любая биоструктура, как правило, макромолекула) вызывает связывание его в комплекс с антителом таким образом антиген обезвреживается. [c.26]

    Система комплемента является частью иммунной системы и осуществляет неспецифическую защиту организма от бактерий и других проникающих в организм возбудителей болезней. Систему комплемента составляют около 20 белков плазмы крови, так называемых факторов комплемента . Все реакции системы комплемента осуществляются, как правило, на поверхности микроорганизма. Белковые факторы комплемента с С1 по С9 инициируют классический путь активации комплемента, а факторы В и В участвуют в активации альтернативного пути. Инициация классического пути происходит благодаря взаимодействию компонента С1 с несколькими молекулами IgG или IgM на поверхности микроорганизма. Альтернативный путь инициируется связыванием фактора В, например, с бактериальным липополисахаридом (эндотоксином). И классический, и альтернативный пути активации комплемента ведут к расщеплению белкового компонента СЗ на два фрагмента, меньший из которых участвует в развитии воспалительного процесса, а более крупный связывается за счет ковалентных связей с поверхностью бактериальной клетки и инициирует цепь реакций, ведущих в конечном счете к ги бели бактерии. [c.488]

    Уже на ранних стадиях своего развития многие лимфоциты, реагирующие с антигенными детерминантами макромолекул собственного организма, элиминируются или инактивируются в результате иммунная система в норме реагирует только на чужеродные антигены. Связывание чужеродного антигена с лимфоцитом вызывает иммунный ответ, направленный против этого антигена. При этом некоторые из лимфоцитов размножаются и созревают, превращаясь в долгоживущие клетки памяти, так что при вторичной встрече организма с тем же антигеном иммунный ответ развивается быстрее и оказывается более сильным. [c.228]

    Сама по себе гипотеза клонального отбора не объясняет в полной мере ни природы разнообразия антител, ни того факта, что качество подгонки антитела и антигена изменяется при повторных встречах. В основе этих свойств иммунной системы могут лежать какие-то другие факторы, тоже обеспечивающие разнообразие и V . В покое В-клетки памяти накапливают мутации, возникающие как в самих У ,-областях, так и в ближайшем их окружении, причем частота этих мутаций в миллион раз превышает частоту спонтанных мутаций в других генах. В результате происходит изменение DR, т. е. изменение антигенной специфичности антитела с уже перестроенной Уц-областью. Иногда сайт связывания изменяется настолько, что антитело вообще теряет свою активность. Но мутационные изменения могут и улучшать соответствие между антителом и антигеном. Тогда при повторном контакте с антигеном активируются преимущественно те В-клетки, которые способны продуцировать наиболее прочно связывающиеся антитела. Поскольку эта система создает клетки, наученные распознавать угрозу повторной инфекции более эффективно, безопасность организма существенно повышается. [c.294]


    К сожалению, систематических исследований влияния тканевого матрикса на лимфоидные клетки пока нет. Накопленные сведения не позволяют даже утверждать, что такое влияние имеет место в условиях организма. Большинство фактов получено в культуре клеток in vitro, поэтому их физиологическое значение непонятно. Вместе с тем этих фактов вполне достаточно для предположения о важнейшей регуляторной роли элементов тканевого матрикса по отношению к оказавшимся в нем лимфоидным клеткам. Одинаково важными могут оказаться взаимодействия лимфоцитов как с клетками стромы, так и с полимерными молекулами межклеточного вещества. Лимфоциты способны контактировать с элементами стромы и через специфическое связывание, опосредованное рецепторными молекулами мембраны, и через неспецифические взаимодействия поверхностных структур лимфоцита с электрическими зарядами полианионов матрикса. Наконец, влияние тканевого матрикса на клетки иммунной системы может модифицировать не только их миграционные свойства, но и функциональную активность. [c.117]

    Каждый иммуноглобулин выполняет две функции. Одна область его молекулы предназначена для связывания с антигеном, а другая осуществляет так называемые эффекторные функции. К ним относится связывание иммуноглобулина с тканями организма, различными клетками иммунной системы и белками системы комплемента. Антигенсвязывающие центры образованы вариабельными участками цепей Ig. Протеолитический фермент папаин расщепляет молекулу IgG на три фрагмента два анти-генсвязывающих Fab и один Рс. [c.200]

    Учитывая, что иммунная система эволюционировала как механизм, предотвращающий микробную инфекцию, можно отметить два очевидных преимущества ассоциативного узнавания МНС. Во-первых, оно фокусирует внимание Т-лимфоцитов на клеточных поверхностях. Например, связывание цитотоксическими Т-клетками свободного вируса (нли раство жмых вирусных антигенов) было бы неэффективно, так как рецепторы оказались бы занятыми и не могли бы разрушать инфицированные вирусом клетки. Во-вторых, оно может обеспечивать то, чтобы каждая категория антигенов вызывала иммунный ответ надлежащего типа например, цитотокснческие Т-клетки не могут обезвреживать чужеродные растворимые макромолекулы (бактериальные токсины и т.п.) и убивать бактерии или другие микроорганизмы, поэтому способность узнавать соответствующие антигены была бы для них совершенно ненужной. [c.62]

    Среди множества проблем иммунологии, одну из них, если иметь в виду прежде всего чисто познавательный аспект этой области биологических знаний, следует отнести к самой фундаментальной, поскольку во многом она определяет возможность решения остальных. Эта проблема связана с изучением на атомно-молекулярном уровне механизмов узнавания и ответных реакций иммунной системы на появление в организме инфекционных антигенов - чужеродных белков, вирусов, бактерий, патогенных веществ. Важный шаг в познании принципов функционирования иммунной системы был сделан в 1959 г. Ф. Бер-нетом, разработавшим так называемую теорию клональной селекции, которая и по сей день пользуется всеобщим признанием [265]. Первоначально теория имела сугубо гипотетический характер. Однако заложенные в ней идеи оказались плодотворными и она вскоре смогла стать для экспериментальных исследований не только системой основополагающих научных принципов, но и конкретной программой поиска. В настоящее время эта программа выполнена и сегодня теория клональной селекции представляет собой скорее констатацию надежно установленных фактов, чем концептуальную основу дальнейшего развития иммунологии [266]. Специфичность антигенной реакции лимфоцитов, согласно теории Бернета, обусловлена наличием на поверхности Т- и В-клеток рецепторных белков, избирательно взаимодействующих с определенными антигенами. Связывание с ними рецепторов активирует клетку и вызывает ее эффективное размножение. Таким образом стимулируется пролиферация лимфоцитов, содержащих на своих поверхностях именно те рецепторы, которые, с одной стороны, комплементарны чужеродному антигену, а с другой - могут адекватно сигнализировать клетке о необходимости антиген-специфцч-ного ответа. По теории клональной селекции иммунную систему образуют миллионы различных клеточных семейств или клонов, каждый из которых состоит из Т- или В-лимфоцитов, имеющих общих предшественников. Так как во всех случаях клетка-предшественница детерминирована к синтезу определенного антиген-специфичного белка рецептора, то все клетки одного клона имеют одинаковую антигенную специфичность и, следовательно, могут ответить на сигнал рецептора только одним, присущим клеткам лишь данного клона, способом. Антигенами, как правило, являются белки и полисахариды. На поверхности этих молекул имеются участки, называемые антигенными детерминантами или эпитопами, которые предрасположены к взаимодействиям с антигенсвязывающим участком антитела В-лимфоцита или 3 67 [c.67]

    Согласно традиционным представлениям, антиген — это молекула, способная вызвать специфический иммунный ответ, который имеет три формы продукцию антител, развитие реакций клеточного иммунитета или состояния толерантности. В более широком смысле антигенами обозначают и смеси молекул, целые микроорганизмы или клетки, используемые в качестве иммунизирующего агента или полидетерминантной мишени для связывания антител в иммунологических тестах. Соответственно эритроциты можно рассматривать ка-к антиген в агглютинирующих тестах. Для того чтобы различать молекулы, индуцирующие образование антител (либо развитие реакций клеточного иммунитета), и молекулы, служащие мишенями для связывания антител, условно используют термин иммуноген для первых и антиген для вторых. Это помогает разделению представлений об иммуногенности и антигенных свойствах молекул, проявляющихся в связывании антител. Для того чтобы быть иммуногенной, молекула должна обладать определенной структурной сложностью (иммуногенностью). Природные иммуногены обычно представляют собой макромолекулы белков или углеводов, либо же их комбинации (в состав которых могут входить и липиды, которые сами по себе, однако, не являются иммуногенными). Мол. масса таких мак-юмолекул превышает 1000 и обычно составляет более 5000. Зысокоиммуногенные молекулы — это те, мол. масса которых обычно превышает 100 000. Иммуногенностью могут обладать и синтетические полипептиды их сополимеры, если они отвечают указанным требованиям. Меньшие по размеру структуры, такие как замещенные ароматические группы, стероиды и пептиды, могут индуцировать специфический иммунный ответ в том случае, если их ковалентно связывают с молекулами-носителями большей мол. массы такие группы проявляют себя как гаптены на сконструированном подобным образом иммуногене. Иммуногенность зависит и от степени родства (или чужеродности) данной молекулы по отношению к иммунизированному виду животного. В данном контексте иммуногенность определяется иммунной системой реципиента. Близ- [c.18]


    Антигенепецифичные рецепторы Т-клеток (ТкР) распознают вирусные антигены, ассоциированные с главными антигенами гистосовместимости. Антител, связывающихся с такой ассоциацией, не образуется. Таким образом, Т-клетки и антитела никогда в норме не конкурируют за одни и те же сайты на поверхности клетки. Это можно продемонстрировать простым экспериментом. Если искусственно создать антитела к сайтам, узнаваемым Т-клетками, и добавить их к смеси инфицирован-ньгх клеток и Т-клеток, то лизиса клеток не происходит, и вирусная инфекция успешно развивается. Этот эксперимент иллюстрирует селективные преимущества иммунной системы позвоночных, в которой Т-клетки и антитела не конкурируют за связывание с одними и теми же сайтами на поверхности инфицированной клетки. [c.82]

    Лимфоциты содержат на своей поверхности рецепторные белки, способные в качестве лигандов связывать антигены, иммуноглобулины, компоненты системы комплемента, медиаторы иммунного ответа, различные гормоны. Некоторые виды рецепторов лимфоцитов те же, что и у других клеток. Это относится не только к рецепторам для гормонов, имеющимся на клетках самых различных органов и тканей, но н F -рецепторам и рецепторам для комплемента. Так, F -рецепторы характерны для фагоцитов (макрофаги и полиморфноядерные лейкоциты), клеток паренхимы печени, трофобласгов плаценты. На многих типах клеток имеются рецепторы для комплемента (см. гл. 8). Однако только лимфоциты В- и Т-ряда синтезируют рецепторные белки, обеспечивающие специфическое связывание этими клетками антигенов. Поэтому основное внимание в этой главе будет уделено именно этому виду рецепторов. [c.191]

    Д. П. Линднер и Э. М. Коган (1976), П. И. Александров и соавт. (1976) особое внимание обращают на антагонистические функции секретируемых тучными клетками веществ (функциональную двойственность), поэтому они могут рассматриваться как регуляторы тканевого гомеостаза малого радиуса действия или тактические регуляторы в отличие от нервной или эндокринной системы. Популяция тучных клеток регулирует кровоснабжение и проницаемость, влияет на размножение, миграцию, обмен и функцию других клеток микрорайона. Вероятно, на уровне популяции имеются какие-то механизмы, регулирующие антагонистические функции, т. е. обеспечивающие преимущественную секрецию одного или другого вещества. Так, при воспалении, вызванном иммунными факторами, важнейшую роль играет связывание поверхности тучных клеток IgE, что ведет к немедленному выбросу гистамина. Такое связывание обеспечивается наличием на поверхности тучных клеток специфических рецептрров для IgE. Важнейшую роль в секреции медиаторов тучными клетками в ответ на иммунные и неиммунные стимулы играют цАМФ и ионы кальция. [c.72]


Смотреть страницы где упоминается термин клеток связывание клетками иммунной систем: [c.88]    [c.98]    [c.433]    [c.118]    [c.196]    [c.411]    [c.266]   
Иммунология (0) -- [ c.427 , c.428 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2024 chem21.info Реклама на сайте