Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеиновые кислоты кислый

    Однако в 1949 г. Кон, применив ионообменную. хроматографию, выделил из щелочных гидролизатов дрожжевой рибонуклеиновой кислоты две изомерные адениловые кислоты [42, 43]. Затем и для других нуклеотидов было обнаружено существование подобных пар изомеров [44—46]. Для всех этих нуклеотидов менее кислый изомер (в отношении ионообменной хроматографии) назвали а -изо-мером, а другой — Ь -изомером будучи довольно устойчивыми к щелочам, эти изомеры в кислых условиях легко превращались [c.127]


    Изучение вирусов имеет большое значение для разрешения проблемы биосинтеза белка. На это указывает тог факт, что все, даже самые простые, вирусы содержат белок и нуклеиновые кислоты [113]. Низшие вирусы содержат только рибонуклеиновую кислоту, в состав же высших вирусов входит и дезоксирибонуклеиновая кислота. Высокое содержание нуклеиновых кислот в вирусах дает основание считать, что значительная часть их белков представляет собой кислые нуклеопротеиды. В области pH, лежащей между изоэлектрическими точками белков и нуклеиновых кислот, они могут соединяться с сывороточным альбумином и другими белками, образуя нерастворимые при низкой ионной силе мезоморфные волокна [114]. [c.398]

    Как известно, функция рибонуклеазы состоит в гидролитическом расщеплении рибонуклеиновых кислот и олигонуклеотидов. Как мы видели, это один из первых белков, изучавшихся с помощью ЯМР, хотя спектры, полученные на ранних стадиях, не обнаруживали характерных деталей. Рибонуклеаза близка по размеру (молекулярная масса 13700, 124 аминокислотных остатка) и форме к лизоциму и является удобным объектом для изучения методом ЯМР. В ее молекуле имеются 4 дисульфидных мостика, 18 остатков основных аминокислот (10 Лиз, 4 Apr и 4 Гис) и только 10 остатков кислых аминокислот (5 Глу и 5 Асп). Таким образом, в растворе при нейтральных pH молекула заряжена положительно. По сравнению с лизоцимом она содержит несколько меньше а-спиральных структур и больше -структур (остатки 42—49, 71—92 и 94—110). В дополнение к 4 Гис имеются также 6 Тир и 3 Фен, но нет остатков триптофана. Полная трехмерная структура рибонуклеазы известна из рентгеноструктурных исследований, проведенных двумя группами авторов [37, 38, 38а]. Форма ее глобулы близка к сферической имеется большая щель, в которой происходит связывание субстрата. С одной стороны этой щели расположены в непосредственной близости друг от друга остатки Гис-12, Гис-119 и Лиз-7, а с другой стороны находится Лиз-41. По данным подробных химических исследований все эти четыре остатка входят в активный центр. [c.363]

    В активный центр рибонуклеазы входят два остатка гистидина — I и И (рис. 45), причем один из них участвует в реакции в основной форме, другой в кислой. Кроме того, в связывании фермента с субстратом участвует остаток лизина, обеспечивающий специфическое взаимодействие между рибонуклеиновой кислотой и ферментом за счет е-аминогруппы лизина и кислорода фосфатной группы. [c.241]

    Добавление (-кислого гликопротеина к раствору дезоксирибонуклеиновой кислоты предотвращает осаждение ДНК трихлоруксусной кислотой. Это явление не наблюдается с растворами рибонуклеиновой кислоты [72], [c.76]


    Частица ВТМ состоит на 947о из белка и на б7о из рибонуклеиновой кислоты. Согласно современным представлениям (Френкель-Конрат, Шрамм) белковая часть ВТМ слагается из 2900 субъединиц — полипептидов с молекулярным весом около 18 000 (рассчитано на основании аминокислотного состава). Они соединены между собою вторичными связями. Белок при растворении в кислой среде (pH 3,5—6,5) распадается на субъединицы, которые вновь объединяются при стоянии раствора, пр-5 котором происходит образование белка с молекулярным весом о<<олэ 100 000. Как превращается этот белок в полимер с молекулярным весом около 50 000 000, пока еще остается неизвестным. Есть предполох<ение, чтс.- существенное значение при этом играют 5Н-группы. а гигантская молекула, представляющая собой полый цилиндр, связывается затем с рибонуклеиновой кислотой, молекулы которой располагаются внутри ц линдра. Так представляют в нйстоящее время образование ВТМ. Характер связи РНК с белком различен- до 70% белка отделяется при мягкой обработке щелочью, остальные 30% не гидролизуются и в боле жестких условиях. [c.534]

    Ниже в качестве примера указаны некоторые красители и их применимость для микроскопических исследований. Краситель солохромцианин применяется для выявления основных и кислотных белков в кислых растворах, в этих условиях нуклеиновые кислоты окрашиваются в синий цвет, а основные белки — в красный метиловый зеленый специфически окрашивает дезоксирибонуклеиновую кислоту в зеленый цвет, а пиронин Ж — рибонуклеиновую кислоту в красный альциановый синий в смеси с оранжевым Ж окрашивает различные элементы гипофиза человека в пурпуровокрасный, синий, оранжевый и сине-черный цвета кармин окрашивает ядра клетки в темно-синий цвет, а гликоген — в красный, что используется для обнаружения гликогена и других углеводов. Для идентификации жиров и жироподобных веществ — липидов используется их способность хорошо растворяться в судаковых и некоторых других жирорастворимых красителях судан черный Б окрашивает липиды в черный цвет, смесь суданов III и IV — в различные оттенки от оранжево-красного до оранжевого, а нильский голубой окрашивает нейтральные липиды в красный или розовый цвета, кислые липиды — в синий цвет. [c.56]

    И аспарагиновой. Однако примерно половина этих аминокислот присутствует в белке в виде амидов. Из 16 ООО аминокислотных остатков, содержащихся в одной рибосоме, приблизительно 3000 имеют основной и 1400 кислый характер. Таким образом, чистый положительный заряд рибосомного белка гороха составляет примерно 1600 на каждую рибосому. Рибосома содержит в своей рибонуклеиновой кислоте примерно 6000 нуклеотидов это означает, что один из каждых четырех нуклеотидов может быть нейтрализован за счет общего положительного заряда рибосомного белка. Для нейтральности рибосом очень важен также ион магния, который также прочно связан с рибосомами. Так, например, рибосомы гороха содержат связанный магний в соотношении 1 экв магния на 3—4 нуклеозидфосфата [8, 37]. Ионы кальция также связываются рибосомами, хотя и в значительно меньшем количестве, чем ионы магния. [c.22]

    В то время было известно, что рибонуклеиновые кислоты могут быть гидролизованы щелочью до мононуклеотидов, которые, как тогда считали, были исключительно нуклеозид-3 -фосфатами. Общий план строения нуклеиновых кислот с 2 —З -фосфодиэфирными связями был предложен Левиным и Типсоном [71], причем было сделано допущение, что 2 -связь гораздо менее устойчива, чем З -фос-фоэфирная связь, и обусловливает таким образом образование при щелочном гидролизе исключительно нуклеозид-З -фосфатов. Однако, когда рибонуклеиновую кислоту обработали змеиным ядом (который содержит фосфомоноэстеразу, специфичную для нуклеозид-З -фосфатов), то получили неорганический фосфат и нуклеозиды [72, 73]. Далее, изучение рибонуклеиновой кислоты методом дифракции рентгеновских лучей, проведенное Астбери, позволило предположить, что основной межнуклеотидной связью является скорее 2 —5 или 3 —5, чем 2 —3 [74]. С другой стороны, прямого химического доказательства наличия 5 -фосфатной связи не существовало, и отсутствие 5 -фосфорилированных производных в кислых гидролизатах рибонуклеиновой кислоты, несмотря на их известную стабильность, действительно находилось в явном противоречии с предположением о 2 (или 3 ) — 5 -межнуклеотидной связи. Устойчивость дезоксирибонуклеиновой кислоты (неизбежно 3 —5 -связанной) по отношению к щелочи в противоположность неустойчивости рибонуклеиновой кислоты также указывало, как считали в то время, на различие в типах связи. В противоположность этому при действии панкреатической рибонуклеазы на рибонуклеиновую кислоту получается смесь олигонуклеотидов, устойчивых к перио- [c.372]

    Большая серия работ по импульсной полярографии полинуклеотидбв опубликована группой сотрудников Института биофизики АН ЧССР. Эти работы частично обобщены в статьях Палечека [46, 241]. В основном исследовали вторичную структуру ДНК и синтетических полирибонуклеотидов. Рибонуклеиновые кисло-, ты (РНК) исследованы в значительно меньшей степени. Полярографированию подвергали растворы веществ в 0,3—1,0 М НС00ЫН4 с добавкой буферного раствора Бриттона — Робинсона. Наличие ионов аммония оказалось весьма существенным для появления пиков в нейтральных и щелочных растворах. По-вйдимому, эти ионы экранируют фосфатные группы нуклеиновых кислот и ослабляют силы отталкивания между макромолекулой и отрицательно заряженным электродом. В кислых растворах восстановление протекает при более положительных потенциалах и ионы аммония в фоне можно заменить ионами натрия. [c.213]


    Рибонуклеиновбй кислоты натриевая сопь (из дрожжей) (Нуклеиновой кислоты натриев. соль натрий рибонуклеиново-кислый) [c.69]


Смотреть страницы где упоминается термин Рибонуклеиновые кислоты кислый: [c.140]    [c.140]    [c.32]    [c.10]   
Химия природных соединений (1960) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеиновые кислоты



© 2025 chem21.info Реклама на сайте