Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Чистая теплота адсорбции положительная

    Теплоты адсорбции газов и паров. Рассмотренные в разд. 6 этой главы схемы I, Пб и I, Пв процесса адсорбции (см. рис. П1,13) предполагают постоянство объема системы. При этом условии тепловой эффект процесса равен изменению внутренне энергии этой системы АС/. Интегральное изменение внутренней энергии системы при адсорбции пара по схеме I, Пв выражается уравнением (П1,96) или приближенно уравнениями (П1,96а). При их выводе мы предполагали, что пар поступает в подсистему I с адсорбентом из подсистемы Пв без изменения давления пара над мениском жидкости в микробюретке. На испарение перешедшего в подсистему I количества га = га -f я га молей адсорбата была затрачена скрытая теплота испарения L [или VL в расчете на единицу площади поверхности адсорбента в подсистеме I, см. выражения (П1,96а) и (111,97)]. Однако в рассматриваемом случае, т. е. при переходе этих га молей адсорбата в подсистему I, не производится какой-либо работы внешними силами, так как при соединении подсистем I и Пе нар расширяется в подсистему I самопроизвольно. В одном из опытов, описанных Кальве [29], сосуд с адсорбентом, соответствующий нашей подсистеме /, и сосуд с жидким адсорбатом, соответствующий нашей подсистеме Пв, помещались в один и тот же калориметр, в котором измерялась так называемая чистая теплота адсорбции, т. е. разность между теплотой адсорбции пара и теплотой испарения жидкости в соответствующих условиях. Если положительной счи- [c.141]


    Интересно, что отрицательные чистые теплоты адсорбции воды на угле при 0°, полученные Кулиджем [ ] и Кейсом и Маршаллом [ ], очень хорошо укладываются в это представление Лэмба и Кулиджа. С ростом температуры от 0° плотность воды возрастает, поэтому теплота сжатия отрицательна. Однако чистая теплота адсорбции воды при более высоких температурах, как было показано в табл. 30, остается попрежнему отрицательной, в то время как теплота сжатия выше 4° уже положительна. [c.319]

    Хилей и другие [109] экспериментально измерили теплоты адсорбции большого числа полярных и неполярных газов на полярных и неполярных поверхностях путем определения теплот смачивания последних. При этом было установлено, что теплоты смачивания рутила в ряде соединений с неразветвленными цепями линейно зависят от дипольного момента смачивающей жидкости. В последующей статье [ПО], описывающей дальнейшие результаты этой работы, было показано, что тепловой эффект смачивания, наблюдаемый в том случае, когда твердое тело имеет чистую поверхность, почти целиком обусловлен адсорбцией первого слоя молекул. Из наклона прямой, выражающей зависимость значений суммарных теплот адсорбции от дипольных моментов, используя уравнение (22), можно определить среднюю величину напряженности поля F у поверхности рутила. Полученное авторами экспериментальное значение напряженности поля на таком расстоянии от поверхности, на которое удален от нее центр диполя, оказалось равным 2,72 1Q5 эл. ст, ед. С помощью уравнения Хюккеля, выражающего зависимость напряженности поля от расстояния (уравнение 17), было рассчитано, что среднее расстояние между центром диполя и поверхностью рутила равно 2,08 А. Попутно отметим, что поляризующее поле угля (см. разделы V,7 и VI, 1) на таком же расстоянии от поверхности равно приблизительна той же величине [416, в]. Однако в последнем случае поле имеет противоположное направление по сравнению с полем у поверхности рутила, вследствие чего периферические диполи, положительные концы которых (атомы водорода) направлены наружу, будут [c.72]

    Для чистого (полупроводникового) кремния вплоть до 200—220°С характерна только молекулярная форма адсорбции хлористого водорода, для которой теплота адсорбции равна 4,19 кДж/моль. О том, что это молекулярная адсорбция, свидетельствуют измерения, сделанные методом контактной разности потенциалов (КРП) [24], которые дали положительную форму заряда. Известно [25], что физически адсорбированный слой (на  [c.205]


    Установленная связь между адсорбцией и смачиванием делает измерение теплот смачивания твердых тел жидкостями одним из наиболее плодотворных способов изучения взаимодействия иа границе раздела твердое тело — пар. На первый взгляд это кажется парадоксальным, однако прямые калориметрические измерения Qx (интегральных теплот смачивания) методически проще и надежнее, чем измерения Qa, они применимы даже тогда, когда измерения Qa затруднены и позволяют исследовать энергетическую неоднородность твердых поверхностей, их среднюю полярность, закономерности адсорбции из растворов и т. д. Современные калориметры, снабженные термисторами, позволяют измерять Qx с точностью до 0,04 Дж. Изучая смачивание чистого твердого тела и образцов, на которых предварительно адсорбировано вещество, можно построить кривые зависимости Qx от степени заполнения поверхности. Обычно значения Qx положительны и по мере заполнения поверхности уменьшаются, поскольку вначале смачиваются наиболее активные участки. Анализ этих кривых позволяет найти количественное распределение активных центров по энергиям. [c.114]

    Согласно теории полимолекулярной адсорбции физическая адсорбция газов и паров в первом слое определяется двумя факторами чистой теплотой адсорбции и поверхностью адсорбента. Иногда газ обладает чрезвычайно различными энергиями взаимодействия с разными адсорбентами например, чистая теплота адсорбции воды на ионных кристаллах положительна, в го время как на угле отрицательна. В таких случаях получаются изотермы различного типа, как это уже обсугкдалось в гл. VI. Однако большинство газов обладает поло кительнЫх ш чистыми теплотами на всех адсорбентах, и теплоты адсорбции данного газа на различных адсорбентах примерно одни и те же, как мы это видели в главах VII и VIII. Это является причиной того, что решающим фактором в физической адсорбции является не природа адсорбента, а величина его поверхности. В настоящей главе мы обсудим различные методы, которые были предложены для определения поверхности адсорбентов. [c.367]

    Многие защитники теории капиллярной конденсации утверждают, что адсорбция в пористых телах в O HQBHOM обусловлена капиллярной конденсацией, хотя они и не отрицают существования мономолекуляр-, ной адсорбции. Эти две школы встречаются на одной общей основе, а именно — допускают, что адсорбция на гладкой поверхности, где нет капилляров, должна быть мономолекулярной. В противоположность этому, теория полимолекулярной адсорбции утверждает, что адсорбция на гладкой поверхности полимолекуляр-на[ ]. В соответствии с этим полимолекулярная адсорбция на гладкой поверхности не приводит к изотермам типа I, а дает изотермы типов II и III в зависимости от того, положительна или отрицательна чистая теплота адсорбции [ ]. [c.433]

    После того как девственное стекло промыто водой, оно адсорбирует пары воды и другие пары в значительно ббльших количествах. Промывка делает поверхность стекла более шероховатот и повышает истинную поверхность. Однако это объяснение, возможно, и недостаточно полное. Фрэзер, Патрик и Смит предполагают, что на поверхности стекла может образоваться слой силикагеля. Это отразилось бы не только на величине поверхности, но и на ее природе. При адсорбции паров воды на силикагеле получаются изотермы типа 11, в то время как на свежевыдутом стекле с применением сухого воздуха получаются изотермы типа 111. Замена поверхности стекла на поверхность силикагеля поэтому вызвала бы резкие изменения в количестве адсорбированных водяных паров, главным образом при более низких относительных дав-.лениях. Относительно небольшое изменение теплоты адсорбции могло бы привести к значительному изменению адсорбированного количества. Предполагая, что теплота адсорбции воды на силикагеле составляет 11 500 кал молъ, в то время как на девственном стекле — 9500 кал]моль (в первом случае положительная чистая теплота 1000 кал, во втором отрицательная чистая теплота 1000 кал), адсорбция при 31° и jo/pg=0,3 соответствовала бы примерно заполнению одного слоя на силикагеле и покрытию лишь 8% поверхности стекла. [c.444]

    Сопоставление полученных методом кривых заряжения изотерм абсорбции водорода на палладии и на его сплавах с металлами группы меди и некоторыми металлами VIII группы [1] показало, что упрочение или ослабление энергии связи Ме—Н в сплаве по сравнению с палладием зависит от величины атомного объема добавляемого компонента. Если параметр решетки вводимого в палладий металла меньше соответствующего значения чистой р-фазы системы Рс1—Н (<4,01. 4), как это имеет место в сплавах Рс1 с Си, N1, Со, Ре, КН и Р1, энергия связи Ме—Н падает, а соответствующие кривые заряжения расположены в более отрицательной области потенциалов по сравнению с кривой заряжения чистого палладия. В то же время сплавление палладия с золотом и серебром (а4,07 и 4,08.4) сопровождается смещением кривых заряжения п более положительную область и соответствующим возрастанием прочности связи Ме—Н. Эти положения подтверждаются также непосредственным определением изостерной дифференциальной теплоты растворения водорода сплавами нескольких систем на основе палладия [2—5]. Однако метод измерений при нескольких температурах достаточно трудоемок кроме того, определение на изотермах точек равной концентрации, когда процесс растворения сопровождается значительной адсорбцией водорода, представляется довольно сложной задачей. [c.141]


    Молекулы, удерживаемые на такой поверхности силами физической адсорбции, будут соответственно этому поляризоваться, образуя диполи, направленные отрицательным концом от поверхности. Полярные молекулы, содержащие периферические диполи, например группы —ОН, —NH2 или —СООН, адсорбируются селективно, причем их положительные концы находятся в непосредственном контакте с отрицательными ионами поверхности. Недавно было показано [7], что теплота смачивания чистой твердой поверхности рутила во многих полярных жидкостях полностью обусловлена адсорбцией диполей молекул, находящихся в первом адсорбированном слое. Оценка средней величины электрического поля Ti02 в точке центра диполя дает значение F = 2,72 10 эл. ст. ед. [c.155]


Смотреть страницы где упоминается термин Чистая теплота адсорбции положительная: [c.450]    [c.450]    [c.322]    [c.322]    [c.72]    [c.126]   
Адсорбция газов и паров Том 1 (1948) -- [ c.319 ]

Адсорбция газов и паров (1948) -- [ c.319 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция положительная

Адсорбция теплота теплота адсорбции

Теплота чистая

Чистая теплота адсорбции



© 2025 chem21.info Реклама на сайте