Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки, аминокислотный состав кислотами и основаниям

    Аминокислотный состав сывороточных белков представлен всеми незаменимыми аминокислотами. В состав небелковых азотистых веществ, составляющих 25—30% от общего количества азотистых веществ, входят (в мг%) свободные аминокислоты — 2,9 мочевина — 3,5 мочевая кислота—11,3 креатин —3,8 пуриновые основания—2,8 креатинин— 1,2. [c.221]


    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    Можно ли точно узнать нуклеотидную последовательность ДНК Первые попытки определения нуклеотидной последовательности были повторением метода определения аминокислотной последовательности белков расщепление молекулы на мелкие фрагменты, выяснение нуклеотидного состава во фрагментах и (на основе данных о перекрывающихся фрагментах) восстановление полной последовательности. Однако в случае белков дело обстояло значительно проще. Наличие в белковой молекуле 20 аминокислот обусловливает большое разнообразие фрагментов, тогда как в состав молекулы ДНК входит всего четыре основания. Поэтому описанный метод можно было использовать только для очень коротких фрагментов нуклеиновых кислот. [c.49]


    Линейные антибиотики-полипептиды. Актиномицеты являются также основными, хотя не единственными продуцентами таких линейных антибиотиков-полипептидов, как, например, алазопептин, дуазо-мицин, альбомицин и др. В настоящее время известно более 50 линейных антибиотиков-полипептидов, которые широко различаются между собой как по химическим, так и по биологическим свойствам. Прежде всего необходимо отметить их структурную разнообразность. Известны миниантибиотики, содержащие всего 2-3 аминокислотных остатка, антибиотики со средней мол. массой (10-30 аминокислотных остатков) и макроантибиотики — белки, в состав которых входит до 100-120 аминокислот. Кроме того, многие из них содержат фрагменты непептидной природы — остатки жирных кислот, углеводов, нуклеиновых оснований и т. п., которые чаще всего находятся либо в начале, либо в конце полипептидной цепи. Структуры некоторых антибиотиков приведены на рис. 3.12 и 3.13. [c.182]

    Существуют различные методы выделения брадикинина из продуктов расщепления белков плазмы трипсином или змеиным ядом и его очистки, разработанные в различных лабораториях. Методика, применявшаяся Эллиоттом и сотр. [661, 666, 668, 669], заключалась в обработке фракционированной смеси белков из сыворотки быка 0,1 и. соляной кислотой при 37° (для инактивации ферментов, разрушающих брадикинин) и в последующей их инкубации с трипсином в течение 6 час. Полученную смесь осаждали спиртом, а из фракции, растворимой в 74%-ном спирте, чистый брадикинин удалось выделить с помощью противоточного распределения, хроматографии на, карбоксиметилцеллюлозе (ацетатно-аммониевый буферный раствор pH 6,5 и 5) и электрофореза. Сначала на основании неточных данных аминокислотного анализа считали, что брадикинин имеет следующий аминокислотный состав Ser Gly Pro Phe Arg= 1 1 2 2 2. Результаты кислотного гидролиза, расщепления химотрипсином и разложения по методу Эдмана позволили приписать бради-кинину следующую структуру  [c.105]

    Из содержащихся в свекле азотистых веществ в жоме остается общего азота 50%, белкового — 80, растворимого—30%. Амидный и аммиачный азот полностью переходят в диффузионный сок. К растворимому азоту относится азот аминокислотный, бетаина, пуриновых оснований и нитратный. Находящийся в жоме протеин представлен альбуминами и глобулинами. Кроме простых белков, в жоме содержится незначительное количество протеидов, главным образом в виде нуклеопро-теидов. В нуклеиновых кислотах этих соединений имеются азотистые структурные элементы, пурин, пиримидин, рибоза (пентоза) и фосфорная кислота. В сыром жоме общее содержание аминокислот колеблется в пределах 0,3—0,5%. В состав аминокислот входят аланин, валин, лейцин, изолейцин, аспарагиновая, глютаминовая кислоты, лизин, аргинин, фенилаланин, тирозин, пролин и триптофан. Амидный азот обнаруживается преимущественно в глютамине и аспарагине. Амиды в свекле и жоме содержатся в сравнительно небольшом количестве. Кроме аминокислот и амидов, жом содержит бетаин— растительное основание , включающее ряд азотистых соединений. [c.19]

    Адансоп [6] считал, что систематические единицы следует выделять, учитывая все известные признаки и считая их равнозначными. Он предложил несколько не связанных между собой классификаций, основанных каждая иа каком-то одном признаке, а затем сравнил результаты, полученные при идентификации видов, произведенной на основании разных признаков. В конечном счете были получены группы, основанные на наибольшем числе совпадающих признаков. Этот метод слишком трудоемок и до недавнего времени не получил широкого распространения, так как для получения удовлетворительных результатов требовалось учесть не менее 60 равнозначных независимых качественных (т. о. 4- или —) признаков [1635]. Однако с появлением вычислительной техники возродился интерес к классификациям такого рода. Вычислительную машину можно по-разному использовать для экспериментальной разработки классификации вирусов [145, 146, 616]. Анализ, проводимый при помощи такой машипы, объехстивен, причем могут учитываться числовые данные, такие, как отношение оснований в нуклеиновых кислотах и аминокислотный состав белка. Классификацию, основанную на расчетах, получеппых с помощью вычислительной машины, иа данном этапе следует рассматривать как экспериментальную. Этот подход, как и любой другой метод классификации, также лимитирован недостатком данных о вирусах. На практике неизбежно некоторое взвешивание признаков, даже когда оно сводится к решению вопроса о том, какие признаки отбросить, а какие включить. Из всех возмоншостей этого подхода нас в настоящее время в основном будет интересовать проверка систем классификаций, полученных другими методами, и выявление новых, ие известных ранее отношений между вирусами, существование хадторых меняет быть затем проверено экспериментальным путем. [c.486]

    О роли D-аминокислот в биологических объектах судить довольно трудно наличие их в природе позволяет подвести по крайней мере телеологическое основание под существование О-аминокислотной оксидазы (стр. 184). Существуют и другие ферментные системы, осуществляющие обмен D-изомеров. Очевидно, что D-аминокислоты могут образоваться при действии аминокислотных рацемаз бактерий (стр. 240). Остатки D-аминокислот, входящие в состав некоторых антибиотиков, придают молекулам последних повышенную устойчивость, делая их менее доступными воздействию пептидаз. В связи с этим интересно отметить, что глутаминовая кислота, входящая в состав клеточных белков В. subtilis, имеет L-конфигурацию, тогда как глутаминовая кислота, выделенная из клеточных капсул, является D-изомером. Предположение о том, что биологическая активность некоторых антибиотиков обусловлена наличием в их молекуле остатков D-аминокислот, лишено фактического основания. [c.69]


    Здесь в реакцию вступает своей аминогруппой остаток аминокислоты, находящийся с краю полипептидной цепи. Если с конца молекулы белка (или полипептида) будет находиться диаминомонокарбоновая кислота, например лшшн, то к ней присоединятся две молекулы динитробензола. Связь аминогруппы аминокислоты с 2,4-динитробензолом оказывается более стабильной, чем обычная кислотоамидная (пептидная) связь. Поэтому при гидролизе, после разрушения пептидных связей, остается нерасщепленным производное — 2,4-динитробензол-аминокислота. Соединение это выделяется, и затем устанавливается химическая природа входящей в его состав аминокислоты. Для выяснения размещения аминокислот внутри полипептидной цепи последнюю путем постепенного гидролиза расщепляют с образованием низкомолекулярных полипептидов, их отделяют друг от друга и в каждом из них определяют с помощью 2,4-динитрофторбензола концевой аминокислотный остаток. Так шаг за шагом выясняют последовательность расположения аминокислотных остатков в полипептидных цепях белковых молекул. Существуют также методы, позволяющие определить аминокислотный остаток, находящийся с краю молекулы и имеющий свободную карбоксильную группу. К ним относится гидразиновый метод , основанный на том, что гидразин (НзЫ—ННз) реагирует со всеми аминокислотами, связанными друг с другом пептидной связью. Концевая же аминокислота (со свободным карбоксилом), не прореагировавшая с гидразином, остается в свободном виде и ее идентифицируют. [c.32]

    ДНК существует в виде двух нитей, или цепей, закрученных в двойную спираль (рис. 2.10). Каждая цепь представляет собой линейный полимер, построенный из нуклеотидов четырех типов. В состав каждого нуклеотида входят одно азотистое основание (аденин, гуанин, цитозин или тимин), сахар (дезокси-рибоза) и остаток фосфорной кислоты. Участок молекулы ДНК, кодирующий полную аминокислотную последовательность какого-нибудь белка, называется геном. Порядок расположения нуклеотидов в той или иной цепи ДНК определяет ту генетическую информацию, которую несет данная молекула (подобно тому как буквы в каком-нибудь слове определяют его смысл). Если обозначить нуклеотиды (по соответствующим азотистым основаниям) как А, О, С и Т, то сказанное будет означать, что последовательности —АСОТ—, АОСТ— и АТСО — содержат разную генетическую информацию. [c.37]


Смотреть страницы где упоминается термин Белки, аминокислотный состав кислотами и основаниям: [c.81]    [c.365]    [c.136]    [c.480]   
Химия и биология белков (1953) -- [ c.78 , c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные белках

Белки, аминокислотный соста

ЗШи, аминокислотный состав

Основания и кислоты



© 2025 chem21.info Реклама на сайте