Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки кислотно-основные свойства

    Для большинства белков изоэлектрическая точка близка к нейтральной среде, но несколько сдвинута в кислую сторону. Это объясняется тем, что кислотные свойства у них преобладают над щелочными и в нейтральном растворе они реагируют как слабые кислоты. Молекула таких белков содержит больше свободных карбоксильных групп, чем аминных, а при гидролизе дает преобладание дйкарбоновых и других кисло реагирующих аминокислот над теми, у которых преобладают основные свойства. Некоторые белки, наоборот, относительно богаче аминными группами и в своем составе содержат больше остатков диаминокислот. В нейтральном растворе они ведут себя как слабые основания. Такие белки (например, гистоны и протамины) имеют изоэлектрическую точку при слабо щелочной реакции. [c.32]


    Три важных фактора — индуктивный эффект, эффект поля и резонансный эффект — могут сильно влиять на поведение органических кислот и оснований, включая и биологически важные а-аминокислоты. В водном растворе, обычной среде нротекания биологических реакций, эти эффекты обусловливают большое разнообразие свойств, так что процессы диссоциации могут происходить во всем диапазоне pH. Это вал<но, потому что белки, построенные из аминокислот, в зависимости от своего аминокислотного состава могут принимать участие в кислотно-основных превращениях. Действительно, в упрощенном виде диссоциацию аминокислот можно рассматривать как миниатюрную модель диссоциации белка. В биохимических реакциях важные функции выполняют белки, и аналогия с аминокислотами может слу кить основой для понимания процессов передачи протонов. Однако такая модель слишком упрощена. Она не учитывает кооперативные взаимодействия. Например, как поведет себя лизин при диссоциации под действием линейно-расположенных положительно заряженных аминокислотных остатков, входящих в состав белка Далее, каким образом близко расположенная гидрофобная область белковой молекулы (т. е. область с более Ш13-кой диэлектрической проницаемостью) влияет на ее диссоциацию в данном химическом процессе То, что в этом случае можно ожидать значительных изменений, видно из поведения глицина при диссоциации в среде с низкой диэлектрической проницаемостью например, в 95%-ном этаноле (рКа карбоксильной группы глицина равен 3,8, а аминогруппы 10,0). Можно было бы подумать, что в этом случае но кислотности глицин близок к уксусной кислоте, но это не так, поскольку для последней р/( равен 7,1. [c.42]

    КИСЛОТНО-ОСНОВНЫЕ СВОЙСТВА БЕЛКОВ [c.602]

    Подобно аминокислотам, белки сочетают в себе как кислотные, так и основные свойства. Являясь амфотерными полиэлектролитами, белки тем не менее существенно отличаются от свободных аминокислот, кислотно-основные свойства которых обусловлены а-амино- и а-карбоксильными группами. В белках основной вклад в формирование кислотно-основных свойств вносят заряженные радикалы аминокислотных остатков, расположенные на поверхности белковой глобулы. Основные свойства белков связаны с такими аминокислотами, как аргинин, лизин или гистидин, а кислые — с аспарагиновой и глутаминовой аминокислотами. Что касается а-аминных и а-кар-боксильных групп аминокислот, то их ионизация не имеет существенного значения, так как подавляющее их число участвует в образовании пептидных связей. Кривые титрования белков достаточно сложны для интерпретации. Это связано, во-первых, с наличием большого числа титруемых групп, а также с тем, что рА для каждой титруемой группы в белке может существенно отличаться от таковой в аминокислоте. Это связано с электростатическими взаимодействиями между ионизированными группами белка, наличием близко расположенных гидрофобных остатков, а также влиянием водородных связей. [c.52]


    Возможные ошибки при определении pH колориметрическим методом. Неточности определения pH могут зависеть от солевой ошибки, обусловленной высокой концентрацией солей в растворе, изменяющей растворимость и диссоциацию индикатора от белковой ошибки, связанной с наличием в растворах белковых веществ (кровь, плазма и др.) от индикаторной ошибки, так как белки, обладающие амфотерными свойствами, взаимодействуют с кислотными и основными индикаторами, а также адсорбируют индикатор при этом происходит изменение общей концентрации его в испытуемом растворе таким образо.м, добавление значительных количеств индикаторов, которые, являясь слабыми кислотами и основаниями, могут, особенно в незабуференных растворах, изменять значение pH от температурной ошибки, зависящей от изменения константы диссоциации индикатора при колебаниях температуры так, -нитрофенол имеет при 0 С р/С = 7,30, а при 50° С рК = 6,81 с изменением температуры изменяется и pH стандартных растворов. [c.67]

    Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой радикала К, представляющего группу атомов в молекуле аминокислоты, связанную с а-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все а-амино- и а-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом своп специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функции, не свойственных другим биополимерам, и обладают химической индивидуальностью. [c.34]

    Амфотерные свойства аминокислот влияют на кислотно-основные свойства белков и их биологические функции, особенно на их буферное действие. Эффективным буфером в эритроцитах крови является белок гемоглобин, содержащий большое количество остатков аминокислоты гистидина, которая и придает этому белку значительную буферную емкость при нейтральных значениях pH. [c.234]

    Амфолит, или амфотерный электролит, — это соединение, обладающее как кислотными, так и основными свойствами. В зависимости от pH среды его суммарный заряд принимает отрицательное, нулевое или положительное значение. С помощью изоэлектрического фокусирования можно фракционировать лишь вещества с амфотерными свойствами. Белки представляют собой наиболее подходящие объекты для изоэлектрического фокусирования. Для этой цели пригодны также многие низкомолекулярные природные соединения. Для создания естественного градиента pH используют преимущественно вещества с амфотерными свойствами. В дальнейшем мы будем называть их амфоли-тами-носителями в отличие от них компоненты разделяемых смесей получат название амфолиты-образцы. [c.298]

    Для белков характерны цветные реакции, часто обусловленные превращением аминокислот, входящих в их состав (биуретовая реакция, ксантопротеиновая реакция, реакция Миллона и т. д.), и реакция осаждения, обусловленная кислотно-основными свойствами. [c.276]

    Более подробное обсуждение кислотно-основных свойств белков приводится в работах [5—7] изоточки различных белков указаны в работе [7]. [c.298]

    Кислотно-основные свойства. Эти свойства аминокислот определяют многие физико-химические и биологические свойства белков. На этих свойствах основаны, кроме того, почти все методы выделения и идентификации аминокислот. Аминокислоты легко растворимы в воде. Они кристаллизуются из нейтральных водных растворов в форме биполярных (амфотер-ных) ионов (цвиттерионов), а не в виде недиссоциированных молекул (последнюю структуру приводят для удобства представления, однако все аминокислоты при физиологических значениях pH имеют структуру цвитте-риона). [c.37]

    Молекулы, из которых построены биологические системы, отличаются необычайно сложным строением и удивительным разнообразием свойств. Изложение этой столь непростой темы мы начнем с обсуждения некоторых физических свойств наиболее характерных небольших молекул и только после этого перейдем к рассмотрению крупных молекул и специальных методов их изучения. Так, например, мы сначала обсудим кислотно-основные свойства отдельных аминокислот, а затем перейдем к рассмотрению кислотно-основного равновесия в полимерных цепях, образованных аминокислотами, соединенными конец-в-конец, иными словами, в полипептидах и белках. [c.9]

    Как видно из этих данных, значения рК одних и тех же функциональных групп в разных белках могут колебаться, причем иногда в довольно широких пределах. Это может быть объяснено тем, что в белках различного строения одна и та же функциональная группа находится в различном молекулярном окружении и ее кислотно-основные свойства меняются в зависимости от химической природы и степени влияния соседних структурных элементов. [c.112]


    Различия в кислотно-основных свойствах белков позволяют их разделять методом электрофореза. [c.296]

    Одним из основных продуктов питания, особенно для детей, является молоко, обеспечивающее организм ребенка белками, важнейшими минеральными веществами и витаминами. Различные виды молока отличаются по своему химическому составу, что оказывает влияние на его усвояемость, например, организмом ребенка грудного возраста. По своему химическому составу женское молоко, как известно, отличается от коровьего и козьего (см. табл. 1). В нем содержится значительно меньше белков и минеральных солей и несколько больше сахара. Женское молоко створаживается нежными хлопьями, в то время как коровье образует грубый плотный сгусток. Характер сгустка зависит от свойств белка, кислотности, буферности и солевого состава молока. С целью смягчения сгустка из коровьего молока и облегчения его перевари-ваемости в детском питании применяют различные молочные смеси, снижая концентрацию белка в молоке добавлением крахмалсодержащих веществ. [c.209]

    Белки являются коллоидными амфотерными электролитами их основные свойства обусловлены наличием аминного азота, а кислотные свойства—главным образом присутствием карбоксильных групп  [c.350]

    Кислотно-оснданые и буферные свойства. Белки подобно аминокислотам проявляют кислотные и основные свойства. Однако амфотерность белковых молекул обусловлена главным образом наличием кислотно-ос-новных групп в составе боковых радикалов аминокислот белка, а также концевых сс-амино- и а-карбоксильной групп. У белка с четвертичной структурой число концевых амино- и карбоксильных групп равно числу протомеров. Однако их количество недостаточно для того, чтобы обеспечить амфотерность макромолекулы белка. Кислотно-основные свойства и заряд белковой молекулы главным образом определяются наличием полярных аминокислотных радикалов, большая часть которых находится на поверхности глобулярных белков. Кислотные свойства белку придают аспарагиновая, глутаминовая и аминолимонная кислоты, а основные свойства — лизин, аргинин, гистидин. Слабая диссоциация 8Н-группы цистеина и фенольной группы тирозина (их можно рассматривать как слабые кислоты) почти не влияет на кислотные свойства белков. [c.72]

    В данном случае и кислотные, и основные функции определяются свойствами одной и той же группы ОН . Но существуют ам-фолиты и другого типа. Их кислотные и основные свойства определяются нал 1чием двух различных функциональных групп. Наиболее характерным примером соединений подобного типа М01 ут служить аминокислоты ЫНгНСООН. Аминокислоты входят и состав белков, поэтому исследование последних невозможно без учета явлений, обусловленных амфотерными свойствами аминокислот. [c.509]

    Ценную информацию о кислотно-основных свойствах белков можно получить при помощи кривых титрования. Способность различных групп к диссоциации или присоединению протонов не зависит от того, присутствуют ли эти группы в составе аминокислоты, пептида или белка. Во многих случаях даже константы диссоциации ионизируемых групп мало зависят от влияния других участков молекулы. Таким образом, зная аминокислотный состав белков, можно на основании значений р/С для ионизируемых групп предсказать поведение белков при элект- [c.213]

    Важнейшим представителем группы высокомолекулярных ссединений, называемых высокомолекулярными электролитами, служат белки, молекулы которых построены из аминокислот. Аминокислоты содержат карбоксильную группу, определяющую кислотные свойства, и аминогруппу, определяющую основные свойства, т. е. белки обладают как кислотными, так и основными свойствами, благодаря чему молекулы белков являются амфотерными электролитами. Вследствие наличия заряда высокополимерные соединения, так же как и лиофобные коллоиды, могут коагулировать под действием электролитов. [c.207]

    Последовательность аминокислот в пептидных цепях белков, например инсулина, производит впечатление случайного и лишенного систематичности набора однако она может оказывать влияние на свойства белков несколькими способами. Так, кислотно-основные свойства белков и их изоэлектрические точки определяются числом и расположением кислых и основных аминокислот. Пространственное влияние замещающих групп определяет стабильность и точки изгиба пептидных спиралей. Последовательность аминокислот также может оказывать влияние на степень межмолекулярных взаимодействий и растворимость белков. Пептиды, состоящие из аминокислот одного типа, часто оказываются чрезвычайно мало растворимыми вследствие сильных внутримолекулярных взаимодействий. Если однородность цепи нарушается в результате включения в нее других аминокис- [c.388]

    Обладая одновременно кислотными и основными свойствами, белки образуют биполярные ионы  [c.31]

    По данным Мори и соавторов (1981) (в списке литературы нет), механизм гелеобразования у глобулинов сои связан также с их концентрацией. Так, растворимые агрегаты, возникающие в результате термической денатурации 115-глобулина, полностью диссоциируют на субъединицы с кислотными и основными свойствами, когда концентрация белков составляет 0,5 %, а при их концентрации 5 % они полимеризуются и способны образовать гель. [c.519]

    Важнейшее химическое свойство белков — способность к гидролизу, который мои<ет протекать при нагревании с сильными кислотами или с щелочами (кислотно-основный гидролиз) и под действием ферментов (ферментативный гидролиз). Гидролиз приводит к распаду полипептидных связей с образованием свободных аминокислот. Ферменты, разрушающие пептидные связи (протеазы), обладают обычно селективным действием — разрушают связи только между остатками определенных аминокислот, так что при гидролизе с участием одного из ферментов могут образоваться вместо отдельных аминокислот высокомолекулярные продукты. [c.547]

    Получают аминокислоты гидролизом белка. Свойства. Так как в аминокислотах есть две функциональные группы, одна из которых (карбоксил) обладает кислотными свойствами, а другая (аминогруппа) — основными свойствами, то в молекуле эти группы взаиню-действуют, приводя к внутримолекулярной нейтрал.i-зации и образованию ионизованной (биполярной) структуры  [c.255]

    Подобно аминокислотам белки являются амфотерными соединениями. Они образуют соли с кислотами и с основаниями. Вследствие слабых кислотных и основных свойств белков их соли обычно сильно гидролизованы. Электрохимический характер растворов белков зависит от концентрации водородных и гидроксильных ионов в растворе. Так же как аминокислоты, белки образуют в кислой среде катионы, а в щелочной — анионы, которые мигрируют под действием электрического тока к аноду или катоду (электрофорез). [c.699]

    Помимо ИЭТ кислотно-основные свойства белков характеризует также изоионная точка. Согласно определению, изоион-ная точка соответствует pH раствора изоионного белка в воде или в растворе какого-либо другого вещества, которое само по себе при растворении в воде не дает водородных или гидроксильных ионов [767]. [c.213]

    В ЭТОЙ книге мы рассматриваем термодинамические основы биологических реакций, вопросы кислотно-основного равновесия и свойства, функции и взаимные связи таких биологически важных макромолекул, как белки и нуклеиновые кислоты. Поскольку наш подход является в первую очередь химическим, слово химия фигурирует в названии этой книги в качестве существительного, тогда как биофизика занимает место определения. Книга предназначена для химиков, интересующихся биологическими проблемами, и для биохимиков, желающих ближе познакомиться с (физико-химическими методами исследования. Хотя ее целесообразно использовать как учебник для студен-тов-выпускников или аспирантов, она может быть рекомендована также в качестве дополнительного чтения. [c.8]

    При образовании пептидных связей в белках и полипептидах отдельные аминокислотные остатки теряют свой цвиттерионный характер. Их кислотно-основные свойства определяются лишь двумя концевыми остатками и боковыми группами. При этом изменение кривой титрования на участках, соответствующих отдельным остаткам, объясняется в основном двумя эффектами во-первых, электростатическими взаимодействиями, вызванными изменениями локальной химической структуры, и, во-вторых, термодинамическими взаимодействиями, обусловленными сопряжением ионного и конформацион-ного равновесий. Рассмотрим разницу между N- и С-концами белков, с одной стороны, и амино- и карбоксильными группами свободных аминокислот — с другой. При pH 7 в свободных аминокислотах имеет место значительное электростатическое притяжение между положительно заряженной НН группой и отрицательно заряженной СОО -группой. Данные по ионному равновесик олигоаланинов, приведенные в табл. 2.1, показывают, что это затрудняет удаление протона от NH , а также присоединение протона к СОО . Таким образом, если для Ala или (А1а)2 влияние заряженных групп очень велико, то уже для (А1а)4 взаимодействие между концевыми заряженными группами не столь важно. В Дополнении 2.1 рассмотрены основные принципы ионизационного равновесия и проиллюстрировано использование данных титрования для оценки энергии электростатического взаимодействия. [c.44]

    Для того чтобы охарактеризовать в какой-либо степени природу депатурационного превращения и описать свойства денатурированных белков, необходимо перечислить те характерные изменения, которые возникают как результат денатурации протеинов. Можно назвать не менее семи признаков денатурации. 1) уменьшение растворимости белка, точнее — повышение способности осаждаться (или высаливаться) при изоэлектрической реакции среды 2) потеря специфической биологической активности (например, ферментной) 3) повышение химической реактивности различных функциональных групп (например, сульфгидрильных, дисульфидных, кислотных, основных, фенольных гидроксилов и др.) 4) повышение расщепляемости белка протеолитическими ферментами 5) повышение вязкости растворов белка (изменение формы и размеров его молекул) 6) повышение абсолютной величины отрицательного оптического вращения 7) повышение коэффициента преломления растворов 8) потеря способности к кристаллизации. [c.159]

    Поэтому имеет смысл говорить о химических свойствах не молекулы белка в цепом, а отдельных ее участков. Во-первых, мы можем выделять гидрофильные и гидрофобные (липо-фильные) участки молекул, в молекулах белков могут быть участки цепи с доминирующими кислотными свойствами (локализация Asp и Glu) или доминирующими основными свойствами (локализация Arg, Lys и His) и т.д. Кроме того, определенные свойства участков цепи могут быть обусловлены взаимодействием соседних аминокислотных фрагментов соседство аспаргиновой [c.100]

    Анализы Ы-концевой последовательности аминокислот этих субъединиц указывают на высокую гомологичность полипептидам с кислотными свойствами, с одной стороны, и полипептидам с основными свойствами — с другой это наводит на мысль, что белки каждого из этих семейств происходят от одного общего генетического предка (теория Оно — ОКпо). [c.60]

    Сравнение биохимических свойств большинства 115-глобули-нов бобовых показывает, что у многих из них имеются большие аналогии. Так, легумины конских бобов и гороха имеют одинаковые константы седиментации, близкие к 125, и молекулярные массы около 350 ООО Да. Кроме того, как и в случае с соей, речь идет о белках, состоящих из 12 субъединиц — шести а-субъединиц с кислотными свойствами и шести р-субъединиц с основными свойствами (с молекулярными массами соответственно 40 000 и 20 000 Да), связанных дисульфидными мостиками. Райт и Боултер [123] предположили, что легумин конских бобов имеет структуру оерб. Мосс и Пернолле [84] полагают, что здесь речь идет скорее о структуре (а—р)б, в которой субъединицы аир представляют собой половинки двухцепочечных белков, соединенных дисульфидными мостиками. [c.160]

    Ферменты, будучи белками, содержат большое число различных функциональных групп, обладающих кислотными, основными или нуклеофильными свойствами. Это уже обсуждалось в предыдущих главах, а также отражено в табл. 8.1. Однако в белках отсутствуют многие специфические группировки, необходимые для осуществления таких реакций, как окисление и восстановление, альдольная конденсация, трансаминирование, конденсация аминокислот, метилирование аминов, трансацили-рование и фосфорилирование. Вещества, которые в сочетании с белками обеспечивают протекание этих реакций, называются коферментами. Они также перечислены в табл. 8.1. [c.186]

    Макромолекулы флокулянтов могут быть в неионизированном состоянии (неионные флокулянты) или диссоциировать на ионы (флокулянты-полиэлектролиты). В полиэлектролитах макромолекулы содержат группы, обладающие кислотными или основными свойствами —СООН, —ЗОгОН, —Р0(0Н>2, НН , ==NOH и др. В соответствии с этим различают анионные и катионные флокулянты заряд макроиона у первых отрицательный, у вторых — положительный. К катионным принадлежат полиэтиленамин, поливинилбутилпиридинбромид и другие к анионным — полиакрилат натрия, гликолят крахмала, альгинат натрия, карбоксиметилцеллюлоза и др. К числу амфотерных полиэлектролитов относятся белки, гид ролизован ный полиакриламид. [c.161]

    Многие физические свойства амидов и имидов могут быть поняты с точки зрения делокализации неподеленной пары электронов азота на я-электроны карбонильной группы. Этот эффект приводит к тому, что связь С (О)—N до некоторой степени имеет свойства двойной связи (кратность связи в амидах да 1,5, в ими-дах Л 1,3). Вместе с тем возникает 1,3-диполь, в котором азот обладает частичным положительным зарядом, а кислород — частичным отрицательным. Планарная природа амидной группы и существование конфигурационных изомеров также являются следствием частично непредельного характера связи. Вместе с тем донорно-акцепторные свойства амидной группы, проявляющиеся в кислотно-основных взаимодействиях, в склонности к комплексооб-разованию, а также в тенденции к ассоциации, являются следствием ее биполярного строения. Универсальность амидной группы в образовании частичных связей между собой и с многими другими функциональными группами в значительной мере определяет структурное многообразие производных биологически важных белков (см. части 23 и 24). [c.426]


Смотреть страницы где упоминается термин Белки кислотно-основные свойства: [c.356]    [c.154]    [c.156]    [c.197]    [c.315]    [c.157]    [c.528]   
Физическая химия (1978) -- [ c.602 ]




ПОИСК





Смотрите так же термины и статьи:

Белки кислотный

Кислотно-основное

Кислотно-основные свойства

Кислотные свойства

ЛИЗ кислотно основной



© 2025 chem21.info Реклама на сайте