Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Псевдоожиженный слой двухмерный

    Почти все описанные выше методы могут быть использованы для исследования промышленных аппаратов с псевдоожиженным слоем в реальных рабочих условиях и дать практическую информацию (более пли менее ценную) о реальных системах. Для более детального изучения природы газовых пузырей необходимы, однако, специальная экспериментальная техника и соответствующие приборы. Наиболее ценную информацию дают опыты с двухмерными псевдоожиженными слоями. [c.126]


    Пусть псевдоожиженный слой находится в прямоугольном аппарате с прозрачными стенками если толщина слоя мала по сравнению с шириной, то его можно рассматривать как двухмерный слой. Ширина и высота слоя в данном случае не играют роли толщина же должна быть в пределах 1—2 см. В таком аппарате слой представляет собой как бы продольный разрез любого трехмерного псевдоожиженного слоя, который необходимо моделировать. Были изучены типичные слои такой формы высотой 50 см, шириной 70 см и толщиной 1 см, а также высотой 3 м и шириной 60 см (фото 1У-3). Пузыри, образующиеся [c.126]

    Двухмерные псевдоожиженные слои могут быть использованы для измерений различных типов, схематично представленных на рис. -3, [c.127]

    Информация, получаемая в экспериментах с двухмерным псевдоожиженным слоем, представляет большую ценность для понимания природы пузырей и позволяет сделать ряд предположений, оправданных для реальных псевдоожиженных систем. [c.128]

    Как и в жидкости, двухмерные и трехмерные пузыри в псевдоожиженном слое по форме в точности не совпадают. Двухмерные пузыри редко бывают круглыми, чаще — эллиптическими с вертикальной осью, нередко вдвое превышающей горизонтальную. Кильватерная зона у двухмерного пузыря всегда меньше и может практически отсутствовать. Это опять-таки связано с псевдо-вязкими силами между частицами в двухмерном слое сопротивление движению пузыря создается в основном за счет влияния стенки. На фото 1У-6 и IV- сравниваются двухмерный и трехмерный пузыри, образующиеся в одном и том же материале. На фотоснимках двухмерных пузырей всегда видны твердые частицы внутри пузыря, но имеются весьма убедительные доказательства, что эти частицы. располагаются только на стенках пузыря в виде своего рода адсорбированной пленки. Кроме того, часто наблюдаются пальцы . [c.136]

    Радиус и скорость пузыря в двухмерных слоях легко точно измерить, но таких данных, по-видимому, недостаточно для предсказания поведения трехмерного пузыря. Хорошо известно что при одинаковом фронтальном радиусе двух- и трех- мерные пузыри имеют неодинаковую скорость подъема в капельной жидкости есть все основания предполагать, что такая же разница существует и в случае псевдоожиженного слоя. [c.142]

    Помимо влияния уменьшения размеров последнего в двухмерном аппарате на скорость подъема пузыря, вероятно, значительное влияние оказывает пристеночный эффект. Резкое сокращение относительного объема кильватерной зоны пузыря в двухмерном псевдоожиженном слое указывает на наличие другого источника сил, тормозящих пузырь. Таким источником могут быть только стенки аппарата, препятствующие интенсивному движению твердых частиц. Несмотря на сравнительную простоту измерения, фиксируемые скорости в двухмерных слоях отличаются гораздо большим разбросом, чем, например, на рис. 1У-9. Заметим, что скорость и относительный объем кильватерной зоны могут также заметно изменяться в результате вибрации. Все эти факторы сказываются на точности экспериментов. [c.142]


    Когда газ-трасер вводится в двухмерный псевдоожиженный слой через стенку аппарата, как показано на фото 1У-27, он движется вверх в виде тонкой струи без заметного расслаивания, по крайней мере до тех пор, пока не войдет в пузырь. Поскольку псевдоожиженный слой с барботажем пузырей выглядит как хаотическая и турбулентная система, в ранних работах не было обнаружено, что газ движется ламинарно обычно его считали полностью перемешанным. [c.158]

    Картина потока, характеризуемого функцией представлена на рис. 1У-16, в, г для двух значений а % и /4. Это изображение относится к двухмерному полю но уравнению (IV,16) для трехмерного поля получается примерно такая же картина. По функции тока y fp можно найти локальную скорость газа в любой точке поля и по ней вычислить траектории и трассы, но следует помнить, что функция характеризует идеализированный случай, поэтому можно ожидать некоторых расхождений с экспериментом. Тем не менее, эта упрощенная теория удовлетворительно описывает свойства псевдоожиженного слоя, содержащего пузыри. [c.162]

    Движение газовой пробки может быть охарактеризовано числом Фруда Рг = Здесь уместно напомнить теоретические положения, приводящие к Рг, поскольку некоторые из них используются применительно к псевдоожиженным слоям — как для плоского (т. е. двухмерного), так и для осесимметричного потока. Для плоского потока скоростной потенциал выразится  [c.174]

    Анализ экспериментальных данных о скоростях подъема газовых пробок в жидкости и в однородном псевдоожиженном слое показал, что изложенная выше теория невязкого движения вокруг изолированной поднимающейся пробки удовлетворительно согласуется почти со всеми опубликованными данными как для двухмерного, так и для осесимметричного потока. В табл. V- приведены данные для систем (в состоянии минимального псевдоожижения), полученные либо в опытах с инжекцией одиночных пузырей , либо путем измерения скорости поршня при V = = В общем данные для труб, приведенные в табл. V- , [c.175]

    На фото У-1, а показана рентгенограмма газовой пробки в псевдоожиженном слое песка . На фото У-1, б и У-1, в демонстрируются фотографии двухмерных газовых пробок двуокиси азота при минимальном псевдоожиженном слое стеклянных сфер полученные методом Роу Величины радиусов кривизны для вершины этих поршней, приведенные в табл. У-З, удовлетворительно совпадают как с расчетными значениями, так и с опытными данными для газовых пробок в жидкостях. [c.182]

    Были зарегистрированы изменения концентрации двуокиси углерода в пузыре между двумя его положениями па различной высоте в двухмерном псевдоожиженном слое. Авторы выдвинули интересную гипотезу, согласно которой обмен происходит за счет флуктуаций вертикального размера пузыря (у полюсов), приводящих к переносу газа-трасера вследствие изменения размеров облака. Для оценки этой гипотезы необходимо располагать большой информацией о таких флуктуациях. Новейшие данные (мы лишены возможности рассмотреть их здесь) базируются на изучении обратного перемешивания в двух слоях — цилиндрическом (диаметром 152 мм) и квадратного поперечного сечения (305 X 305 мм). [c.294]

    Гамильтон с соавт. полагают, что эффективные значения /ш, найденные в опытах по перемешиванию, слишком малы максимальное наблюдаемое значение близко к 2. При наличии циркуляции в газо-жидкостной системе относительный объем жидкости в кильватерной зоне пузыря превышает 2, так что с этой точка зрения псевдоожиженный слой подвержен циркуляции в незначительной мере . При исследовании двухмерных псевдоожиженных слоев тормозящее воздействие плоских стенок аппарата, вероятно, обусловливает уменьшение циркуляции. Предстоит еще выяснить, действительно ли это является особенностью двухмерного слоя в отличие от трехмерного. [c.309]

    Повышение неоднородности псевдоожижения при использовании грубого газораспределителя подтверждено экспериментально недавними исследованиями двухмерных систем, снабженных различными распределительными устройствами. Установлено, что решетка с большим количеством отверстий дает неудовлетворительное качество псевдоожижения. В зависимости от числа отверстий в решетке и скорости газа в слое вблизи решетки наблюдались зоны, в которых большинство твердых частиц было абсолютно неподвижно, а газ проходил преимущественно через остальную часть слоя. При замене полученной спеканием решетки на перфорированную отмечалось заметное ухудшение эффективности реактора с псевдоожиженным слоем. [c.370]

    В опытах с двухмерным аппаратом было обнаружено что в газожидкостном псевдоожиженном слое свинцовой дроби газовые пузыри стремятся собраться около сферической лобовой части водяных пузырей , присутствующих в подобных системах. [c.662]

    Фото 1У-26. Двухмерный псевдоожиженный слой катализатора крекинга нефти при интенсивном освещении сзади (слой размером 4,7 х 30,5 мм)  [c.748]

    С целью количественного сопоставления теоретических и экспериментальных характеристик газового облака можно привлечь обширные экспериментальные данные для двухмерных слоев , а также позднейшие данные Стюарта о трехмерных псевдоожиженных системах. Стюарт определяет радиусы пузыря Г(, и облака как расстояния от центров кривизны верхней части поверхностей пузыря или облака до вершины пузыря или облака, соответственно. Из этого определения следует, что, зная положение точки инверсии скоростного поля и, можно рассчитать радиус [c.114]


    В опытах с воздушным псевдоожижением труба (диаметром 30 мм и длиной 10 мм) располагалась перпендикулярно пластинам, образующим двухмерный слой (поперечное сечение 300 X X 10 мм, высота 600 мм) . Трубу монтировали симметрично на на уровне примерно четверти высоты слоя от распределительной решетки. В слое песка при числе псевдоожижения (воздухом) до 2—3 отчетливо различали три режима потока вблизи трубы. [c.525]

    При водяном псевдоожижении трубу (диаметром 50 мм и длиной 10 мм) монтировали в двухмерном слое (поперечное сучение 300 X 10 мм, высота 1300 мм), как показано на фото ХП1-2, причем линии тока воды проявляли путем одновременного ввода в слой семи отдельных потоков голубой краски. Темная окружность на фотографии вокруг трубы относится к ее креплению на задней стенке и с линиями тока жидкости не связана. [c.526]

    Не представляет затруднений распространение метода Мюррея на пузыри, форма которых ближе к действительной, путем использования конформного отображения Коллинса. Мюррей рассмотрел также случай двухмерного пузыря с замкнутой кильватерной зоной, ограниченной более сложными (с точками перегиба) линиями тока в потенциальном поле. Позднее Мюррей использовал подобный метод для анализа развития во времени пузыря, возникающего в однородном псевдоожиженном слое и первоначально имеющего сферическую (или круглую, в двух измерениях) форму. Он показал, что на нижней поверхности такого пузыря быстро развивается вогнутость, образующая верхнюю границу кильватерной зоны за пузырем. [c.113]

    Часто бывает необходимо исследовать одиночный изолированный газовый пузырь ила его воздействие на прилегающие к нему области слоя это практически невозможно сделать, регулируя весь поток газа. Для получения одиночных пузырей и их исследования часто используется приведенная ниже методика (иногда с несущественными изменениями). Слой — двухмерный или любой иной формы — поддерживается в псевдоожиженном состоянии равномерно распределенным газовым потоком, скорость которого очень немного превышает такой слой либо совсем не содержит пузырей, либо они малы (и их появление случайно). Через распределительную решетку или иным путем в аппарат вводят трубку, заканчивающуюся в слое, через которую подают порции газа, генерируя таким образом одиночные дузыри. Давление инжектируемого через трубку газа, длительность инжекции, диаметр трубки и другие условия, необходимые для получения стабильного пузыря нужного размера, подбирают эмпирически. [c.131]

    Показано что упомянутый анализ применим к кругшым двухмерным пузырям и пузырям в псевдоожиженном слое. Тогда формула (ХП1,2), записанная для трехмерных систем, применительно к двухмерным пузырям в жидкостных и псевдоожиженных системах преобразуется к виду [c.533]

    Фото XI11-4. Поднимающийся пузырь, охватывающий вертикальный стержень в двухмерном псевдоожиженном слое. [c.760]

Рис. 2. Локальные кривые вымывания Газов-трйссёроа (1) в кривые флуктуа-Шш плотности псевдоожиженного слоя (2) л-фрагменты двухмерного слоя (материалы групп А и О) 6-инертный и 11Дсорбирующийся трассёры, соотв. Тр И Тр с (материал группы А) -инертный трассер (материал группы 0)1 Со, С Начальиая и текущая концентрация трассёра т-время. Рис. 2. <a href="/info/144963">Локальные кривые вымывания</a> Газов-трйссёроа (1) в кривые флуктуа-Шш <a href="/info/1234191">плотности псевдоожиженного</a> слоя (2) л-фрагменты <a href="/info/8636">двухмерного слоя</a> (материалы групп А и О) 6-инертный и 11Дсорбирующийся трассёры, соотв. Тр И Тр с (<a href="/info/920813">материал группы</a> А) -<a href="/info/324716">инертный трассер</a> (<a href="/info/920813">материал группы</a> 0)1 Со, С Начальиая и <a href="/info/402071">текущая концентрация</a> трассёра т-время.
    При исследовании распределения пузырей в двухмерном псевдоожиженном газом слое была установлена поперечная неравномерность потока. Ее объяснили пристеночным эффектом пузырь, поднимающийся около стенки, имеет тенденцию удаляться от нее вследствие коалесценции. Поперечная неравномерность становится более заметной по мере увеличения скорости газа и расстояния от газораспределительного устройства. Частота и размеры пузырей возрастают в центре слоя за счет периферийных зон. Ясно, что такая поперечная неравномерность потока приводит к возникновению макроциркуляции в слое. Авторы перечисляют много работ, в которых отмечалось наличие циркуляции, однако количественной информации недостаточно. [c.308]

    Впоследствии для теоретического расчета отношения объемов облака и пузыря были предложены более сложные математические модели, подтвержденные в дальнейшем экспериментально В частности, существование облака было доказано фотографированием пузырей двуокиси азота при их прохождении через двухмерный слой псевдоожиженных воздухом твердых частиц. Таким образом, поток газа через пузырь, определяемый по уравнению (VIII,9), соответствует случаю, когда пузырь по отношению к газу в непрерывной фазе действует как зона замкнутых контуров циркуляции, т. е. при U ,lu f >i, что практически встречается в большинстве реакторных систем. [c.361]


Смотреть страницы где упоминается термин Псевдоожиженный слой двухмерный: [c.534]    [c.57]    [c.83]    [c.309]    [c.534]    [c.132]   
Псевдоожижение (1974) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Двухмерные



© 2025 chem21.info Реклама на сайте