Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Псевдоожижение неоднородность

    Дэвидсон и Харрисон вычисляли максимальный размер устойчивого пузыря, приравняв скорость его подъема и экспериментально измеренные скорости витания частиц. Они выявляли зависимость отношения диаметров пузыря и частицы (а не просто диаметра пузыря) от размера частиц, разности плотностей твердого материала и ожижающего агента и вязкости последнего. Если в данной системе отношение диаметров пузыря и частицы менее 1, то псевдоожижение следует считать однородным в диапазоне 1—10 псевдоожижение носит переходный характер от однородного к неоднородному если указанное отношение превышает 10, можно определенно ожидать интенсивного образования пузырей. Данный подход, несомненно, обоснован и согласуется с экспериментом однако, размеры пузырей, рассчитанные по упомянутому отношению, оказываются меньше обычно наблюдаемых в неоднородных псевдоожиженных системах. [c.34]


    Некоторые другие подходы к проблеме однородного и неоднородного псевдоожижения базируются на определении максимального размера устойчивого пузыря в противоположность концепции о том, будут ли вообще в системе существовать различимые, пузыри. [c.33]

    В результате экспериментов по гидродинамике установлено, что крошка поликапролактама с эквивалентным диаметром э=4 мм псевдоожижается при средней скорости 0,46 м/сек, отнесенной к полному сечению камеры. Псевдоожижение неоднородно, что объясняется благоприятными условиями для образования и роста пузырей в случае крупнозернистых материалов. Но и при неравномерном псевдоожижении данного материала намечена область относительно устойчивого кипения при числах псевдоожижения /Сго== 1,53 1,72. За минимальную высоту установки излучателя над поверхностью кипящего слоя предлагается принимать значение высоты кипящего слоя. Последняя определяется по найденной эмпирической формуле  [c.93]

    Теоретические исследования неоднородного псевдоожижения.  [c.6]

    В первом приближении соотношение скоростей потока массы частиц в полость пузыря и осаждения частиц в ожижающем агенте позволяет оценить вероятность сохранения пузырей иначе говоря, можно предсказать характер псевдоожижения (однородное или неоднородное). Скорость притока массы твердых частиц аналогична скорости перемешивания. Очевидно, достаточно-интенсивное перемешивание (подавляющее эффект осаждения) может привести к увеличению расстояний между отдельными частицами, так что большее количество газа пойдет через слой этим путем. [c.32]

    Неоднородность структуры слоя приводит к движению ожижающего агента преимущественно в отдельных областях в слое возникают зоны неподвижного и псевдоожиженного зернистого материала. Внешне слой может казаться хорошо сжиженным, но в действительности часть твердых частиц остается в неподвижном состоянии на распределительном устройстве, и перепад давления получается меньше теоретического. Это явление чаще наблюдается в системах газ — твердые частицы. Полностью в псевдоожиженное состояние слой переходит при скорости С/,5, как показано на рис. П-1, в. [c.40]

    При большой плотности твердых частиц наблюдаются отклонения от уравнения (11,9), особенно заметные в случае высоких слоев мелких частиц. Так, при псевдоожижении вольфрама (плотность 9,3 г/смз, размер частиц 776 и 930 мкм) водой образуются отчетливые пузыри и поршни 25, 2в Цри ожижении свинцовой дроби водой также образуются неоднородные псевдоожиженные слои 2 29. По мнению Андерсона и Джексона зо, режим псевдоожижения в таких системах должен быть переходным. В других работах [c.50]


    Если частицы имеют размер меньше I мм, это оказывает значительное влияние на тип исевдоожижения (см. рис. 6, 7). Можно ожидать более спокойное псевдоожижение, когда используют более мелкие частицы или когда мелкие частички г.Еодятся в слой псевдоожиженный неоднородно. На практике трудности возникают из-за свойства очень мелких частичек слипаться, что приводит к каналообразованию в слое. Для примера определим (см, рис. 6) наибольший размер [c.129]

    Благодаря тесному взаимодействию ожижающего агента и твердых частиц во всех точках псевдоожиженного слоя характеристики их движения связаны между собой. При однородном псевдо-ожижении система обычно интенсивно перемешивается, тогда как в неоднородном слое поток ожижающего агента через непрерывную фазу является преимущественно потенциальным, и перемешивание осуществляется в основном за счет барботажа пузырей. Обзор исследований по перемешиванию в псевдоожиженном слое за последние годы выполнен Ганном . [c.63]

    Устойчивость однородного псевдоожиженного состояния представляет особый интерес из-за большой разности в поведении неоднородного псевдоожиженного слоя (с барботаже] ), характерного для большинства систем газ—твердые частицы, и однородного слоя, возникающего при жидкостном псевдоожижении. [c.85]

    Неоднородное псевдоожижение характеризуется присутствием в слое пузырей и встречается на практике в большинстве случаев (хотя и не во всех) применения псевдоожижения. Свойства и поведение одиночных пузырей, включая обусловленную ими циркуляцию твердых частиц, рассматриваются в гл. IV. В гл. V отмечается, что в слоях с большим количеством пузырей происходит коалесценция, которая может привести к возникновению поршневого режима псевдоожижения. [c.255]

    II. ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ НЕОДНОРОДНОГО ПСЕВДООЖИЖЕНИЯ [c.266]

    Полученные в цитируемой работе результаты свидетельствуют также о значительно большей интенсивности перемешивания в жидкой фазе для системы свинцовая дробь — вода, нежели для системы стеклянные шарики — вода. Очевидно, различие плотностей свинца и воды достаточно для возникновения неоднородного псевдоожижения. В литературе приводятся крайне скудные сведения о перемешивании в неоднородных жидкостных псевдоожиженных слоях. [c.321]

    Повышение неоднородности псевдоожижения при использовании грубого газораспределителя подтверждено экспериментально недавними исследованиями двухмерных систем, снабженных различными распределительными устройствами. Установлено, что решетка с большим количеством отверстий дает неудовлетворительное качество псевдоожижения. В зависимости от числа отверстий в решетке и скорости газа в слое вблизи решетки наблюдались зоны, в которых большинство твердых частиц было абсолютно неподвижно, а газ проходил преимущественно через остальную часть слоя. При замене полученной спеканием решетки на перфорированную отмечалось заметное ухудшение эффективности реактора с псевдоожиженным слоем. [c.370]

    Итак, можно представить себе следующую схему переноса тепла в неоднородном псевдоожиженном слое (рис. Х-4). В момент времени < = О к теплообменной поверхности температурой Гту подходит пакет твердых частиц (для простоты — сферических, диаметром д) при температуре ядра нсевдоожиженного слоя Тв и характерной порозности Еа- Пусть в пристенной зоне (порозность пакета в ней ew ф 6 , термическое сопротивление — Нуу) температура падает от Туу до Т. Начиная от границы этой зоны [c.421]

    Методика оценки упомянутых трудноопределимых величин и составления расчетного уравнения на основе выражения (Х,11) базируется на анализе движения газового пузыря (диаметром D , объемом Ув) с гидродинамическим следом (его объемная доля /и/) при этом учитывается сжимаемость непрерывной фазы вокруг пузыря. Пусть в псевдоожиженном слое сечением А газ движется со скоростью П при этом скорость его в непрерывной фазе составляет 17а, а скорость подъема пузыря (относительно стенок аппарата) — ыа- Расширение неоднородного псевдоожиженного слоя с учетом коэффициента сжимаемости непрерывной фазы Б < 1 может быть выражено как [c.426]

    Близость принятой теоретической модели к реальному механизму переноса тепла в неоднородном псевдоожиженном слое не исключает необходимости ее дальнейшего совершенствования. Отметим важность уточнения закономерностей расширения псевдоожиженных систем и определения локальных зависимостей е = / U), формул для R p с учетом конвективной и радиационной составляющих, а также 6 7 — толщины пристенной зоны Представляется также важным получение расчетных формул для и U ft применительно к тенлообменным поверхностям [c.430]

    Наконец, на фото ХУШ-4 демонстрируются пузыри над свободной поверхностью газожидкостного псевдоожиженного слоя свинцовой дроби диаметром 2 мм. Они также невелики и однородны по размеру. Интересно отметить, что в противоположность равномерному распределению пузырей в объеме системы, наблюдавшемуся в предыдущих случаях, здесь пузыри движутся группами. Это явление, возможно, связано с неоднородным характером псевдоожижения водой слоя свинцовой дроби. [c.662]


    Анализ гидродинамики псевдоожиженного слоя представляет собой сложную задачу, так как помимо однородного часто наблюдается неоднородное псевдоожижение (наличие крупных пузырей, каналов, фонтанирование и т. п.). Для интенсификации технологических процессов с твердым зернистым материалом используют также встречные струи и закрученные потоки [13], наложение колебаний [14, 15], акустические [6] и электрические поля [16]. [c.120]

    О механизме теплообмена между поверхностью и неоднородным псевдоожиженным слоем зернистых материалов, Хим. пром., № 6, 41S (1966). [c.571]

    Эффективность пневмотранспорта в плотном слое будет определяться разностью (3.4.6.1). Чем она меньше, тем ниже силы трения, тем выше эффективность. Однако при малых значениях трудно удержать в устойчивом режиме процесс транспортирования в плотном слое, который может легко перейти в пнев-мотранспортный процесс в виде псевдоожиженного неоднородного слоя П . [c.216]

    Исходя из представления о решающем влиянии гидродинамических сил на однородность псевдоожижения, Вильгельм и Квоук [63] предложили в качестве определяющего критерия — критерий Фруда Vr = u gd. При Рг < 1 слой однороден, а при Рг > 1 псевдоожижение неоднородно. Викке и Хедден [64] предложили уточнить этот критерий, заменив его на величину  [c.234]

    Хорошо известно, что режим идеального вытеснения недостаточное условие для пол> чения достоверных данных. Весьма важно, чтобы реактор был изотермичен, так как отклонения от изотермичности могут привести к большему искажению данных по кинетике основных реакций, чем эффекты неоднородностей потока. Для обеспечения изотермичности слоя катализатора используют различные приемы. В частности, одним из эффективных приемов является помещение реактора с катализатором в псевдоожижений слой нагретого песка [30]. В бане с псевдоожиженным слоем теплоносителя устанавливается равномерный тепловой режим, соответственно и в реакторе или системе последовательно соединенных реакторов по всей высоте слоя обеспечивается изотермичность. Температура реактора зау меряется термопарой, прикрепленной к наружной стенке. Указанный способ подвода тепла имеет определенные трудности ввиду необходимости поддержания теплоносителя в псевдоожиженном состоянии длительное время. Однако он является наиболее рациональным, так как отпадает необходимость загрузки в реакторы инертной насадки для фиксации слоя катализатора в зоне равномерного температурного поля, как это делается обычно в реакторах с подводом тепла через стенку от электронагревательной спирали (см. рис. 3.15). В показанном на этом рисунке типе реактора изотермичность обеспечивается в ограниченной зоне ввиду больших теплопотерь через верхний и нижний фланцы. Реактор такого типа обычно используется при проведении экспериментов с большой глубиной превращения в длительных опытах. Недостатком такого типа реактора является ухудшение показателей по селективности катализатора из-за протекающих реакций термодеструк-цни в зоне инертной насадки над входной зоной катализатора. Этот реактор также может быть приспособлен для проведения опытов с малой степенью преврашения, т. е. при высоких значениях объемной скорости подачи сырья [35]. Суть такого приспособления заключается в том, что внутрь пустого реактора помещается [c.91]

    Действительно, давно было замечено, что при ожижении твердых частиц газами псевдоожиженный слой не однороден [189]. Он представляет собой слой взвешенных частиц с достаточно низкой порозностью, в котором поднимаются заполненные газом свободные от частиц полости, получившие название пузырей. Во время подъема пузыри могут увеличиваться в размерах, коалесцировать, что иногда приводит к образованию поршневого режима псевдоожижения, представляющего собой чередование сгустков частиц и газовых полостей, занимающих все сечение аппарата. Поршневой режим движения твердой фазы наблюдается также и при транспортировании твердых частиц газом в вертикальных трубах. Ряд авторов, первым из которых бьш, по-видимому, Уоллис [94], вьщвинули предположение, согласно которому пузыри и поршни являются следствием нарастания всегда присутствующих в потоке малых возмущений порозности. Однако в экспериментах неустойчивость наблюдается далеко не во всех дисперсных потоках. Так, ожи-жаемые жидкостью слои небольших твердых частиц из не слишком плотного материала однородны. Опыты по ожижению частиц газами при высоком давлении указьгеают на явный переход от однородного режима псевдоожижения к пузырьковому в случае увеличения скорости газа [190]. Не наблюдаются неоднородности и при движении небольших капель и пузырей в жидкостях. [c.134]

    В случае газовых потоков частицы обычно образуют скопления (комки), а газ—пузырьки вместо того, чтобы оставаться равномерно распределенным. Такой псевдоожиженный слой будем называть неоднородным, или кипяищм, слоем. Если имеется стабильный слой и ясно наблюдаемая свободная поверхность, процесс называется стационарным псевдоожижением, или псевдо-ожишнием с плотной фазой. [c.254]

    В одной из ранних работ для качественной характеристики физического состояния системы были введены термины однородное и неоднородное псевдоожижение. Пусть при повышении скорости ожижающего агента слой может непрерывно расширяться за счет равномерного увеличения промежутков между частицами до тех пор, пока в аппарате не останется единичная частица в этом случае говорят об однородном псевдоожижении. Если, наоборот, при скоростях, превышающих скорость начала псевдоожижения, о жижающий агент движется через слой в виде пузырей (примерно так же, как газ через слой жидкости), то псевдоожижение называют неоднородным. Различие между неоднородным и однородным псевдоожижением легко продемонстрировать, сравнивая поведение слоя стеклянных шариков размером около 0,5 мм, псевдоожижая их воздухом или водой. В нервом случае псевдоожижение будет неоднородным, во втором — однородным. В общем, различие между однородными и неоднородными системами обусловлено разницей в свойствах капельных жидкостей и газов. Последующие работы показали, однако, что в некоторых особых условиях (например, для систем вода — вольфрамовые частицы ) неоднородное псевдоожижение наблюдается в системах жидкость — твердые частицы и, наоборот, для систем газ — твердые частицы (например, ожижение пластмассовых микросфер сжатой двуокисью углерода ) характерно однородное псевдоожижение. [c.24]

    Изучение этих качественно различных систем идет по трем направлениям. Первое заключается в подробном математическом анализе, рассматривающем слой в целом как однородную массу безотносительно к деталям физики явления. Второе направление состоит в отыскании эмпирических корреляций по тенло-массооб-мену, расширению слоя и другим его свойствам применительно к запросам практики. Третье направление сводится к изучению наиболее широко распространенных неоднородных (псевдоожиженных газом) систем, т. е. к фундаментальному исследованию [c.24]

    Если скорость газового (жидкостного), потока (ожижающего авента) превышает минимальную величину, необходимую для возникновения псевдоожиженного слоя, то либо последний продолжает расширяться за счет увеличения среднего расстояния между твердыми частицами, либо избыток ожижающего агента проходит через слой в виде пузырей, образуя двухфазную систему. Эти два вида псевдоожижения можно соответетмнно рассматривать как однородное и неоднородное. Однородное псевдоожижение наблюдается, как правило, в системах жидкость — твердое тело , а также чгаз — твердое тело — при очень малых размерах твердых частиц и в овраниченном интервале скоростей. Неоднородное псевдоожижение характерно для всех других систем газ — твердое тело , а иногда — в случае высокой плотности твердых частиц и для жидкостного псевдоожижения. [c.37]

    Полагают, что вид псевдоожижения зависит от максимально возможного размера стабильного газового пузыря в псевдоожиженном слое. Если скорость циркуляции газа внутри пузыря (обычно, приблизительно равная скорости его подъема) превышает скорость витания твердых частиц uf, то последние всасываются в пузырь через его основание, и пузырь разрушается. Так как скорость подъема пузыря возрастает с увеличением его объема и пракпияевки не зависит от свойств псевдоожиженного слоя , то максимальный размер стабильного пузыря растет с увеличением скорости витания твердых частиц. Если размер пузыря превышает диаметр частиц, например, в 10 раз, то пузырь становится видимым и псевдоожижение будет неоднородным. Если же размеры пузыря соизмеримы с диаметром твердых частиц, то псевдоожижение можно считать однородным. Для характеристики вида псевдоожижения [c.37]

    В псевдоожиженном слое существуют благоприятные условия для тепло-и массообмена между твердыми частицами и ожижающим агентом происходит быстрое перемешивание твердых частиц. При атом коэффициенты теплообмена с наружной поверхностью аппарата весьма высоки, поэтому аппараты с псевдоожиженным слоем используют как теплообменники и хими-ческие реакторы, особенно в тех случаях, когда требуется тонкое регулирование температуры и когда системе нужно сообщать (или отеодить ив нее) большие количества тепла. В связи с атим необходимо выяснить характер движения ожижающего агента и твердых частиц. По внешнему виду поток ожижающего агента в псевдоожиженном слое кажется турбулентным. Однако при скоростях, близких к скорости начала псевдоожижения, и в непрерывной фазе неоднородного слоя с барботажем пузырей движение потока обычно является ламинарным этот режим нарушается только в сильно расширенном Однородном слое и при использовании крупных твердых частиц. [c.38]

    Большинство данных для систем газ — твердые частицы получено в экспериментах с идеализированными системами, во многих отношениях отличающимися от реального псевдоожиженного слоя. В связи с этим как будто следовало бы отказаться от этих моделей как от слишком идеализированных и, возможно, далеких от реальной обстановки в псевдоожиженных системах. Однако имеются очень убедительные аргзшенты в пользу моделей, описанных в данной главе. В любом слое твердых частиц, даже неоднородных по размеру и неправильных по форме, при псевдоожижении газом будут возникать пузыри, которые легко наблюдать на свободной поверхности слоя. Единственной причиной существования пузырей являются силы, заставляющие твердые частицы двигаться примерно таким образом, как описано выше. Газовый поток должен быть сходен с изображенным на рис. IV-16, так как в противном случае пузырь не мог бы существовать. Следовательно, если в слое имеются пузыри, то потоки газа и твердых частиц должны быть, но меньшей мере, подобны рассмотренным в данной главе. [c.167]

    Большое внимание уделено в литературе проскоку газа с пузырями, характерными для неоднородного псевдоожиженного слоя. Если бы между пузырями и непрерывной фазой отсутствовал обмен тазом, то проскок (байнас) был бы полным . С другой стороны, если бы обмен был бесконечно быстрым, то проскока вообще не наблюдалось бы. В реальных условиях обмен обязательно суи -ствует за счет диффузии и, возможно, также конвекции, обусловленной либо сквозным потоком газа через пузырь, либо вихрями за поднимающимся пузырем. [c.289]

    Однородное псевдоожижение (см. гл. II) наблюдается главнуи образом при жидкостном псевдоожижении твердых частиц. Известно, однако, что при значительно отличающихся плотностях жидкости и твердых частиц также возможно образование неоднородной системы, характеризующейся наличием жидкостных пузырей , т. е. образований, свободных от твердых чаетиц. Так, например, при псевдоожижении водою слоев свинцовых и стеклянных шариков (й = 3 мм) в стеклянном аппарате диаметром 101 мм визуально наблюдали нарушения однородности системы [c.321]

    Для раздельного анализа трех стадий массопереноса в псевдоожиженных системах массообмен между стенкой и слоем (раздел I), а также между твердыми частицами и ожижающим агентом (раздел II), следует рассматривать в отсутствие сегрегации фаз (т. е. газовых пузырей). Это можно осуществить кепериментально, так как для развития газовых пузырей необходима некоторая конечная высота слоя. В жидкостных псевдоожиженных системах дискретная фаза (пузыри) образуются на высоте , превышающей 0,5—1м при газовом псевдоожижении пузыри заметных размеров ( с1р) присутствуют уже на высоте 0,2 м. Таким образом, данные по масообмену могут быть получены как в отсутствие пузырей (однородное псевдоожижение), так и а тех случаях, когда дискретная фаза оказывает влияние на скорость массопереноса (неоднородное псевдоожижение). В разделах I и II мы будем рассматривать только однородные псевдоожиженные системы неоднородные будут основной темой последующих разделов. [c.377]

    Причина отмеченного расхождения заключается в том, что вторая группа авторов, проводившая эксперименты в режиме неоднородного псевдоожижения, интерпретировала свои опытные данные на основе модели однородного псевдоожижения, учитывая сопротивление масоообмену только между частицами и ожижающим агентом. Это неправомерно, так как процесс в данном случае лимитируется единственным диффузионным сопротивлением — между стенками газового пузыря и ядром газового потока. [c.391]

    Среднее значение коэффициента теплоотдачи в неоднородном псевдоожиженном слое определяется по величине ймгн вычисленной на основе Еа и с учетом доли (1—/<,) по формуле (Х,4) и среднего времени соприкосновения пакета с поверхностью [c.422]

    Псевдоожижение в плотной фазе обычно ассоциируется с неоднородными системами, возникающими при использовании газов в качестве ожижающего-aieuma. Для жидкостного псевдоожижения характерны плавное расширение слоя и монотонное увеличение порозности от mf до 1 — в диапазоне от скорости начала псевдоожижения Umf до скорости витания Uf. В случае псевдоожижения газами расширение слоя ограничено и при скоростях, превышающих Umf, появляется фаза пузырей, выделяющихся из плотной фазы и практически не содержащих твердых частиц. С возрастанием скорости газа объем плотной фазы изменяется незначительно, но перемешивание в слое становится более-интенсивным и количество газа, проходящего через слой в виде пувырей, повышается. [c.567]

    Устойчивость фонтанирования определяется рядом условий, при отсутствии которых движение твердой фазы становится неустойчивым, способствуя возникновению неоднородного псевдоожижения, а при увеличении скорости газа — поршнеобразованию. [c.622]

    Фонтанирование может быть получено при использовании жидкостной струи вместо газовой. Однако жидкостное фонтанирование, по всей вероятнооти, не представляет особого интереса, поскольку оно не имеет никаких очевидных преимуществ перед однородным псевдоожижением частиц, которое (в отличие от неоднородного — при псевдоожижении газом) является эффективным как для крупных и одинаковых по размеру, так и для мелких частиц зернистых материалов. [c.624]


Библиография для Псевдоожижение неоднородность: [c.566]   
Смотреть страницы где упоминается термин Псевдоожижение неоднородность: [c.180]    [c.507]    [c.43]    [c.180]    [c.16]    [c.38]    [c.50]    [c.255]    [c.111]    [c.567]   
Основы техники псевдоожижения (1967) -- [ c.26 ]




ПОИСК







© 2025 chem21.info Реклама на сайте