Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение опасности электрохимической коррозии

    Наиболее опасным видом электрохимической коррозии на установках каталитического риформинга и гидроочисткн является высокотемпературная газовая коррозия, возникающая в реакторных блоках при контакте металла с циркулирующими потоками, содержащими водород, углеводороды и сероводород. В определенных условиях водород взаимодействует с углеродом стали, и происходит обезуглероживание, снижающее пластические свойства стали. Этот вид коррозии принято называть водородной коррозией. Главная ее опасность заключается в растрескивании металла следовательно, при эксплуатации таких установок надо принимать меры по предупреждению коррозии. [c.199]


    ОПРЕДЕЛЕНИЕ ОПАСНОСТИ ЭЛЕКТРОХИМИЧЕСКОЙ КОРРОЗИИ [c.100]

    Определение опасности электрохимической коррозии [c.176]

    Несмотря на то, что общие принципы корродирования подземных трубопроводов, их электрохимической защиты от почвенной коррозии и электрометрических измерений, направленных на выявление текущего состояния ЭХЗ и изоляционных покрытий, достаточно хорошо известны, при практической реализации ЭХЗ и контроля технического состояния трубопроводов остается еще много вопросов, требующих выяснения. Одним из них является вопрос о реальных возможностях электрометрических обследований в части определения наличия и степени опасности коррозионных повреждений трубопроводов. [c.107]

    Следует заметить, что электрохимическая гетерогенность сварного соединения, обусловившая избирательный характер коррозии, сама по себе не является достаточным условием появления наиболее опасного вида разрушения типа коррозионного растрескивания, возникающего только при определенных сочетаниях [c.219]

    Независимо от продукции скважин (нефть, газ, газовый конденсат), углекислотная коррозия протекает по электрохимическому механизму, в результате наличия конденсатных и пластовых вод. Однако в определенных условиях коррозия в присутствии СО2 может развиваться и в результате химического взаимодействия с металлом [18]. Известны случаи, когда при повышенных температурах и давлениях происходит обезуглероживание стали и обеднение ее другими компонентами. Углекислота оказывается опасной даже для никеля, особенно в присутствии сернистого газа и сероводорода. При высоких температурах с углекислым газом энергично взаимодействует также молибден и ниобий [17]. [c.26]

    Приведенные данные позволяют сделать также важные практические выводы в плане коррозионной защиты. Во-первых, скорость коррозии латуни, определенная гравиметрически по убыли в массе образца, не отражает истинного размера и опасности коррозионных разрущений, так как при этом не учитывается масса восстановленной меди. Поэтому гравиметрические коррозионные испытания обязательно должны сочетаться с измерениями коэффициента селективного растворения по всем компонентам сплава. Во-вторых, недостаточная глубина катодной защиты может интенсифицировать обесцинкование, вместо того чтобы подавить его. Трудности контроля защитного потенциала в различных зонах теплообменного оборудования, необходимость поддержания достаточно высокой плотности катодного тока, опасность нарушения сплошности пассивирующих оксидных пленок при катодной поляризаций приводят к тому, что электрохимическая катодная защита латуней, бронз и других сплавов, склонных к СР, применяется крайне ограничено. По этим же причинам практически не используется протекторная защита латуни [245]. [c.191]


    Смешанные ингибиторы тормозят обе электродные реакции. Они менее опасны, чем чисто анодные замедлители, и в ряде случаев могут не приводить к росту интенсивности коррозии при недостаточной их концентрации. При преимущественном торможении катодного процесса их свойства приближаются к свойствам катодных ингибиторов, т. е. они становятся безопасными. Поэтому главное, что должен выявить ускоренный метод — это механизм действия ингибитора с тем, чтобы избежать опасных последствий, которые может вызвать анодный ингибитор. Это можно установить электрохимическим способом, или определением [c.220]

    Определенные виды легких заполнителей отличаются также содержанием агрессивных по отношению к стали веществ. В основном это относится к различного рода шлакам, в которых, как правило, имеется сера в разных неустойчивых состояниях. Соединения серы обычно стимулируют коррозию. Котельные шлаки, кроме того, содержат несгоревшие частицы угля. Уголь составляет со сталью гальваническую пару, в которой сталь играет роль анода, т. е. подвергается электрохимическому растворению. Это обстоятельство резко усиливает опасность кор- [c.130]

    Однако анодные ингибиторы при неблагоприятных условиях, когда концентрация их в электролите понижается настолько, что ее уже недостаточно для того, чтобы запассивировать всю поверхность, могут, как было показано выше, усилить скорость коррозии в тех местах, где коррозионный процесс не приостановлен. Объясняется это эффектом внутренней анодной поляризации, возникающей за счет неполной пассивации электрода. Когда электрод не полностью запассивирован, происходит дифференциация электрохимических реакций, обусловливающих коррозионный процесс, по поверхности и небольшая активная часть поверхности подполя-ризовывается анодно за счет увеличения эффективности катодного процесса на запассивированной части электрода. В этом отношении анодные ингибиторы, если их неразумно применять, из-за частичной пассивации электрода и локализации анодного процесса представляют определенную опасность. [c.83]

    В связи с тем, что суммарный коррозионно-механический износ является (результатом многих процессов, а также с тем, что внимание специалистов было сосредоточено главным образом на химической коррозии наименее стойких деталей из цветных металлов или сплавов (например, вкладышей подшипников коленчатого вала), опасность и значение электрохимической коррозии долгое время недооценивались. Это помимо всего прочего привело к путанице в терминах и определениях, принятых в научно-тех1нической литературе по коррозии и защите металлов и по нефтепродуктам. В табл. 4 приведены основные понятия и термины применительно к проблеме нефтепродукты и коррозия по их состоянию на се-Г0ДНЯШ1НИЙ день. Как видно, несмотря на сопутствующие процессы необходимо четко различать коррозионные свойства нефтепродуктов (их коррозионную агрессивность или, наоборот, противокоррозионные свойства), связанные в основ1ном с химическими процессами и зависящие от способности самих нефтепродуктов вызывать или предотвращать химическую коррозию металла, и их защитные свойства, т. е. способность защищать металл от электрохимической коррозии в присутствии электролита. В соответствии с этим необходимо, в частности, различать противокоррозионные присадки к нефтепродуктам, добавляемые для улучшения их коррозионных свойств, и маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов. Как показано [c.15]

    Подземное хозяйство промышленных площадок и городов представляет собой сложную и многообразную по видам сооружений сеть металлических коммуникаций, которая характеризуется большой насыщенностью подземными металлическими сооружениями, среди которых имеются газовые и водопроводные сети, мощные водоводы, теплопроводы, кабели электроснабжения и связи и др. Применение в подобных условиях существующих аналитических методов и методов моделирования весьма ограничено. Но в то же время обеспечение защиты особенно в зоне действия блуждающих токов необходимо сразу же после укладки сооружения в грунт. Это означает, что проектные решения требуют уточнения натурными испытаниями на реальных сооружениях в реальных условиях. Работа по наладке запроектированных и построенных средств защиты, определению и выбору оптимальных параметрёЪ и схем электрохимической защиты, а также, в случае необ1одимости, определения количества и мест размещения дополнительных средств защиты требует силового оборудования, разнообразной аппаратуры и измерительной техники, кабелей, материалов, инструмента. Выполнение работ в связи со срочностью решения вопросов защиты от коррозии не может осуществляться длительное время из-за опасности сквозных коррозионных повреждений, особенно в зоне действия блуждающих токов. [c.196]


    Исследования электрохимических закономерностей изменения окислительно-восстановительного потенциала раствора 10% uS04+10% H2SO4 и проявления в нем межкристаллитной коррозии стали показали, что только при определенном соотношении этих значений протекает процесс межкристаллитной, а не общей коррозии металла [2, 3]. Так, если окислительно-восстановительный потенциал раствора имеет близкое пли более высокое значение, чем потенциал пробоя, потенциал, при котором нарушается окисная пленка на стали, то появляется опасность возникновения общей коррозии ее. Поэтому представляется нецелесообразной рекомендация [4j применения раствора, содержащего [c.4]

    Многообещающая система защиты была введена в практику Джевонсом и Пинноком 1 в 1916 г. для защиты большой системы газопроводов в Стаффордшайре, где блуждающие токи уже причинили до этого значительный вред. Трубы были соединены между собой так, что получился хороший электрический контакт между секциями и прекрасная защита снаружи. Затем в области анодных секций (только эти части страдали от коррозии) были погружены в землю в сырых местах присоединенные к трубам длинные шины. Были также сделаны, где это было нужно, специальные подушки из коксовой золы, насыщенной водой. Эти шины в количестве 200 шт. представляют собой настоящие аноды системы, которые и подвергаются быстрой коррозии, теряя иногда до одного дюйма в год своей длины. Коррозия защищенного таким образом трубопровода практически прекратилась. После десятилетнего опыта можно было считать, что опасность от блуждающих токов прошла. Среднее количество ремонтов упало с 34 за год (средняя цифра за 11 лет, предшествующих установке системы) до 3 за 1928 г. Это, повидимому, показывает, что защита трубопроводов по отношению к коррозии может быть обеспечена даже в районе, изобилующем блуждающими токами, при условии устройства продуманной системы. Можно сомневаться, была ли бы система удовлетворительной при установке ее людьми без электрохимического понимания вопроса. Нужна была осмотрительность в определении правильных мест для шин. Неблагоразумное же применение их в катодной зоне могло быть причиной увеличения общего тока, воспринимаемого системой. [c.46]

    Данные непосредственных определений защитных свойств различных цементов во время испытаний (осмотр состояния арматуры в бетоне, потеря в весе) подтверждают возможность оценки этих свойств электрохимическими методами. Так, при длительных испытаниях железобетонных образцов в различных средах (в 3 /о-ном растворе Na l влажной атмосфере, содержащей SO2 агрессивном грунте водопроводной неагрессивной воде) стальные электроды под покрытиями из гипсоглиноземистого и расширяющегося цементов, а также портландцемента с добавкой 5—10о/о СаСЬ имели значительные коррозионные повреждения. Скорость коррозии стали под такими покрытиями в зависимости от условий испытаний составила 0,005—0,009 При этом коррозия имела место как при относительно небольшой (15 и 25 мм), так и значительной (50 мм) толщине защитного слоя бетона. Коррозионные повреждения в этом случае носят местный характер (отдельные язвы и каверны) и являются наиболее опасными. Эта опасность возрастает еще и потому, что образовавшиеся под покрытием продукты коррозии создают з бетоне большие внутренние напряжения, которые в последующем приводят к его растрескиванию. [c.45]


Смотреть страницы где упоминается термин Определение опасности электрохимической коррозии: [c.511]    [c.42]   
Смотреть главы в:

Справочник по защите подземных металлических сооружений от коррозии -> Определение опасности электрохимической коррозии




ПОИСК





Смотрите так же термины и статьи:

Коррозия электрохимическая

Коррозия, определение



© 2025 chem21.info Реклама на сайте