Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод, определение в сталях тер

Рис. 67. Установка для определения углерода в стали и чугуне Рис. 67. Установка для <a href="/info/19280">определения углерода</a> в стали и чугуне

    Углерод присутствует в сплавах железа в трех формах связанный в твердом растворе (феррите), в карбидах и в виде графита Определение содержания различных видов углерода в сталях и чугунах основано на их различных физических и химических свойствах и их реакциях в растворах электролитов. [c.29]

    Экспресс-анализаторы для определения углерода АН-29 и АН-160. Экспресс-анализаторы предназначены для определения содержания углерода в сталях и сплавах и обладают высокой производительностью (например, для АН-160 — тысяча анализов в [c.183]

    Действие водорода на сталь проявляется не сразу, а после определенной выдержки в газе при повышенных температурах и давлениях. На первом этапе обезуглероживаются поверхность стали и приповерхностные локализованные объемы, но не наблюдается образования отдельных пустот по границам зерен нет также отвода продуктов коррозии. Затем, при продолжительном действии водорода на сталь, наблюдаются растрескивание по границам зерен, отвод продуктов коррозии и резкое снижение содержания углерода в стали. [c.252]

    Ю. А. Клячко, А. Г. Атласов и М. М. Шапиро. Анализ газов, неметаллических включений и карбидов в стали. Металлургиздат, 1953, (596 стр.). Руководство посвящено описанию определения газов в жидкой и твердой стали химическими методами и посредством вакуум-плавления, а также подробному рассмотрению техники работы при анализе газов. Книга содержит также описание химических и электрохимических методов исследования твердых неметаллических включений и их качественного и количественного определения. В последней части изложены методы анализа карбидов и методы фазового анализа углерода в сталях. [c.490]

    Изучены особенности контактного плавления, смачивания поверхности графита, а также пропитки графита образовавшимся расплавом при контактно-реактивной пайке стали с графитом при разном исходном содержании углерода в стали. Описаны методики расчета и экспериментального определения скорости контактного плавления стали с графитом и скорости пропитки расплавом графитовой основы под давлением поджатия. [c.267]

    Диаграмма состояния системы железо — углерод. В 1868 г. Д. К. Чернов впервые указал на существование определенных температур ( критических точек ), зависящих от содержания углерода в стали и характеризующих превращения одной микроструктуры стали в другую. Этим было положено начало изучению диаграммы состояния Ге—С, а 1868 г. стал годом возникновения металловедения — науки о строении и свойствах металлов и сплавов. Позже Ф. Осмонд уточнил значения критических точек и описал характер микроструктурных изменений, наблюдаемых при переходе через эти точки. Он дал названия важнейшим структурам железоуглеродистых сплавов эти названия употребляются до сих пор. [c.617]


    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ УГЛЕРОДА В СТАЛЯХ [c.291]

    Определение измерением объема газа. Навеску карбоната раз-.лагают кислотой, и выделяющийся газ переводят в бюретку для измерения объема газа. При определенных физических условиях количество СО можно определить непосредственно по увеличению общего объема газа в сосуде, соединенном с бюреткой. Аналогичный способ широко применяется для определения углерода в сталях. Для этого навеску металла сжигают в струе кислорода, и образующуюся смесь кислорода и двуокиси углерода собирают в специальный сосуд для измерения объема газов. Измеряют объем смеси газов (О и СО ), затем поглощают СО раствором щелочи и снова измеряют объем газа. По уменьшению объема легко вычислить содержание углерода в стали. [c.112]

    Так, например, для определения содержания угольной кислоты (связанной) в карбонатах поступают следующим образом. Навеску карбоната помещают в колбу рядом с пробиркой, содержащей кислоту (рис. 102). Колба соединена с бюреткой для измерения объема газа. Собрав прибор, выливают кислоту на анализируемый карбонат, причем выделяется углекислый газ. Изменение объема газов измеряется с помощью бюретки зная объем выделившейся СО , а также температуру и давление, можно вычислить содержание карбонатов в анализируемой пробе. Один из наиболее распространенных газообъемных методов, а именно определение углерода в стали, подробнее описан в 127. [c.445]

    Определение углерода в сталях и сплавах (от 0,03 до [c.328]

    Косвенная кондуктометрия заключается в определении одного компонента./В многокомпонентном растворе, при использовании для анализа, кроме кондуктометрии, еще второго метода физико-химического анализа (определения рефракции, вязкости, pH, плотности и т. п.). К косвенной кондуктометрии относится также определение концентрации различных газов, когда после реакции указанных газов в растворе с определенными веществами изменяется электропроводность раствора. Метод косвенной кондуктометрии используется например, для определения содержания углерода в стали. В результате сжигания пробы углерод превращается в СОг. После пропускания СО2 в раствор щелочи электропроводность раствора изменяется. По величине изменения электропроводности можно судить о количестве СО2, а следовательно, и о содержании углерода в стали. [c.89]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    Сравнение энергии активации для процесса обезуглероживания стали марки 20 (7200 кал/г -атом) с энергией активации процесса диффузии углерода (20000 кал/г—атом) показывает, что диффузия углерода в стали не может являться определяющим фактором при обезуглероживании стали. Проведенные расчеты показывают, что количество водорода, диффундирующее при определенных условиях, в несколько раз больше того количества, которое реагирует с углеродом стали. Энергия [c.167]

    Для определения углерода в титане и его сплавах углерод окисляют до двуокиси углерода, нагревая пробы при температуре приблизительно 1200 °С в атмосфере кислорода. В этом методе аппаратура аналогична используемой для определения углерода в стали, но анализ титансодержащих продуктов требует специальных мер предосторожности при окислении пробы в связи с высокой экзотермич-ностью реакции. [c.27]

    Термодатчик входит в состав серийно выпускаемого прибора ПИТ-2 аттестован как средство определения процентного содержания углерода в сталях может использоваться также для контроля других примесей и разбраковки материалов по маркам кроме того, позволяет осуществлять контроль как качества и структуры металлов и сплавов, так и толщины электропроводящих покрытий, при небольшой конструкторской доработке. [c.645]

    Магнитную восприимчивость образца можно также определить, наблюдая за изменением индукции, которое происходит при внесении его внутрь солено<ида. На этом принципе основано действие некоторых серийных приборов, предназначенных для контроля производственных процессов, например для определения углерода в стали пои использовании приборов для измерения магнитной проницаемости. [c.175]

    Предназначен для определения объемным методом процентного содержания углерода в стали, чугуне и других металлах путем сжигания металла в струе ки--с лоро да. [c.13]

    Предназначен для определения объемным методом углерода в стали, чугуне и других металлах путем сжигания металла в струе кислорода при температуре 1150—1400°С с автоматической прокачкой газовой смеси. [c.13]

    Сопротивляемость микроударному разрушению хромоникелевого аустенита увеличивается при повышенном содержании углерода в основном за счет образования значительного количества а-фазы мартенситного типа. В аустенитных сталях с низким содержанием углерода а-фаза имеет небольшую тетрагональность и по свойствам приближается к ферриту. Следовательно, высокая сопротивляемость микроударному разрушению аустенита обусловлена определенным содержанием углерода в стали, обеспечивающим образование упрочняющих фаз мартенситного типа. [c.113]


    Для повышения эрозионной стойкости стали необходимо соблюдать определенные условия легирования, определяемые природой легирующего элемента, его количеством и содержанием углерода в стали. При этом оптимальный эффект может быть получен только при определенных режимах термической обработки. Решение этой сложной задачи требует выполнения дальнейших исследований. [c.136]

    Когда этот прибор применяется для поглощения окислов серы при определении углерода в сталях прямым сжиганием в токе кислорода, его левую часть неплотно заполняют асбестом, а в правую часть наливают серную кислоту, насыщенную хромовым ангидридом. [c.849]

    А использовать этот газ можно для получения окиси углерода, который стал бы служить сырьем для получения смеси углеводородов — синтетической нефти . Синтез нефти — идея не новая. Еще в 1908 г. русский химик-технолог Е. И. Орлов установил, что из водяного газа (смесь окиси углерода и водорода) при определенных условиях можно синтезировать углеводороды, которые содержатся в нефти. Прошло совсем немного време- [c.125]

    Результаты определения углерода в сталях химическим (I) и спектральным (II) методами, % [c.292]

    При выборе условий возбуждения необходимо учитывать потенциал ионизации и энергии возбуждения спектральных линий определяемых элементов. Для определения трудновозбудимых элементов (например, неметаллических элементов) требуются высокие мощности источника излучения. Например, для определения углерода в стали по линии С III 2296,86 А с потенциалом возбуждения 53,5 В подходит только высоковольтная искра без дополнительной индуктивности. [c.198]

    Экспериментальные условия те же, что изложены в инструкции по определению содержания углерода в сталях при возбуждении на воздухе (табл. 9.4.10.1). [c.223]

    При определении углерода в сталях для уменьшения частичного окисления в качестве сильного восстановителя используют противоэлектрод из алюминия или магния [6]. Пары этих противоэлектродов, взаимодействуя с атмосферным кислородом, препятствуют окислению большей части испарившегося углерода. Таким образом, значения А К будут выше, угол наклона аналитической кривой возрастет и чувствительность анализа увеличится. Так, предел обнаружения при искровом возбуждении (при подходящих параметрах) составляет примерно 0,2% без применения упомянутых противоэлектродов и около 0,1% при использовании магниевого противоэлектрода. Однако много большего эффекта можно достичь в инертном или восстановительном защитном газе. Например, в водороде упомянутый предел обнаружения снижается до 0,001 % [7—9]. [c.250]

    В 1868 г. Д. К. Чернов впервие указа.л на существование определенных температур ( критических точек ), зависящих от содержания углерода в стали и характеризующих пре-пращения одной микроструктуры стали в другую. Этим было положено начало изучению диаграммы состояния Ре—С, а 1868 г. стал годом возникновения металловедения — науки о строении и свойствах металлов и силавоп. [c.673]

    Большинство аппаратов нефтеперерабатывающих заводов изготовляют из хорошо свариваемой углеродистой стали с содержанием углерода не более 0,25%- Углеродистые стали обыкновенного и повышенного качества поставляются согласно ГОСТ, В соответствии с ним выпускают стали двух групп группы А, если важно, чтобы были выдержаны определенные механические свойства (стали Ст, 1, Ст, 2 и т, д.), и группы Б, если требуется вы-держ 1ть определенный химический состав (стали МСт 1, МСт. 3 и т. д.). В табл, П-3 приведены механические свойства углероди-сто11 стали обыкновенного качества и примерные области применения 1 нефтяном аппаратостроении. [c.22]

    Ввиду специфичности и некоторых других особенностей реакции выделения газообразных веществ имеют большое значение и в количественном анализе. Содержание воды в разнообразных продуктах обычно определяют путем удаления Н О в виде газообразной фазы. Количество воды рассчитывают на основании потери в весе иногда выделяющуюся воду поглоп ают каким-либо подходящим веществом, и количество воды определяют по увеличению веса этого вещества. Реакции образования газообразных продуктов применяют в анализе карбонатных пород, определении углерода в стали, определении аммиака в удобрениях, аминных групп в белковых веществах и в ряде других важных определений (см. 25). [c.31]

    Алексеева, Ушакова, Шварцмана [52-54], В этих исследованиях была поставлена задача выяснить связь между термодинамической активностью углерода в сталях и склонностью этих сталей к водородной коррозии.Эту связь авторы характеризуют определенными количественными соотношениями. При вьшолнении термодинамических расчетов авторы [ 52-54]. полагали, что метан обра ется при при взаимодействии с углеродом, находящимся в феррите на поверхности микрополостей, существующих в стали, по уравнению С-(- 2Н2<= СН4,Константа равновесия этой реакции определяется уравнением  [c.135]

    К.— пока единственный физ.-хим. метод анализа, не использующий зависимость св-ва от концентрации определяе--мого в-ва, т. к. измеряется непосредственно число электронов, участвующих в электродной р-ции. Это обусловливает высокую чувствительность метода (ниж. предел определяе-мь1х концентраций 10" —10"" М) и его прецизионность нри определении как больших кол-в в-ва, так и примесей. Разработаны микро- и ультрамикроварианты К. По своему инструментальному оформлению К. значительно проще др. методов анализа. Выпускаются спец. потенциостаты и гальваностаты, поддерживающие строго пост, значения Е и h, а также приборы спец. назначения (напр., для определения углерода в стали и чугунах). Рабочие электроды в К. изготовляют в осн. из платины и ртути, иногда из графита, стеклоуглерода и др. К. используют для анализа пленок, покрытий, микрообъектов, определения осн. компонентов в полупроводниках. С ее помощью изучают также кинетику хим. р-ций, каталитич. процессы, определяют число электро- [c.292]

    Создан магнитошумовой сигнализатор, предназначенный для контроля содержания углерода в сталях, степени поверхностного упрочнения, определения степени дисперсности структуры, а также содержания немагнитной фазы в ферромагнитных изделиях. [c.368]

    Большое значение приобрел сейчас радиоактивационний анализ , принцип которого состоит в следующем. Стабильный изотоп того или иного элемента переводят в радиоактивный, подвергая анализируемый образец облучению в атомном реакторе (или другим способом). Последующее измерение радиоактивности позволяет судить о количественном содержании элемента в исследуемом веществе. Например, атомы углерода при облучении протонами превращаются в радиоактивный изотоп азота N1 излучающий позитроны и имеющий достаточно большой период полураспада (9,93 мин). Это явление используют для радиометрического определения углерода в стали. Образец стали облучают протонами и измеряют интенсивность возникающего излучения, которая прямо пропорциональна содержанию углерода в стали. Радиоактивационным способом определяют сотые доли процента углерода в течение 5—10 мин. [c.334]

    При цементации твердым карбюризатором, например древесным углем, изделия закладываются в стальные коробки или ящики и засыпаются углем с добавлением углекислых солей щелочных металлов (ВаСОз, ЫагСОз), которые, разлагаясь при высокой температуре в присутствии твердого углерода, дают атомарный активный углерод. Ящики плотно закрываются и обмазываются глиной, после чего нагреваются в печи по определенному режиму. Диффузия (проникновение) атомов углерода в сталь происходит как в результате непосредственного контакта твердого углерода со сталью, так и в результате образования газовой фазы — окиси углерода. При содержании углерода в стали 0,1—0,2%, температура цементации находится в пределах 900—920° С при этом глубина цементации повышается с увеличением времени выдержки. [c.290]

    С развитием теории типов и затем теории Кекуле о четырех-валентности углерода структурная органическая химия развивалась в течение второй половины девятнадцатого ве а так успешно, что идея о постоянной валентности углерода быстро стала общепринятой догмой. В этот период практические исследования химиков-оргапиков были настолько плодотворны, что теоретическая возможность выделения какого-либо сложного радикала в его атомарной форме экспериментально не исследовалась. Однако упомянутый метод определения плот- [c.10]

    Для определения влияния углерода на образование новых фаз в процессе микроударного воздействия были проведены опыты с такими же но типу сталями, но с другим содержанием углерода. В стали типа 12Х18Н9 содержание углерода было увеличено до 0,3%, а в стали типа 25Х14Г12 уменьшено до 0,1%. Эти сплавы подвергали также рентгеноструктурному анализу. [c.112]

    Высокая эрозионная стойкость стали 25Х14Г8Т объясняется присутствием в ее составе определенного количества хрома, марганца и углерода. Ранее было показано, что в аустенитных сталях при содержании марганца 12—15% оптимальное содержание хрома смещается в сторону увеличения до 16—17% (см. рис. 99). Кроме того, при содержании хрома менее 12% стали, рекомендуемые для работы в условиях гидроэрозии, нестойки к электрохимической коррозии. Положительное влияние углерода наблюдается при увеличении его содержания до 0,25%. Дальнейшее увеличение содержания углерода в сталях этого типа приводит к стабилизации аустенита, в результате чего эрозионная стойкость снижается. Для аустенитных сталей, содержащих меньше 0,15% углерода, величина максимального наклепа при микроударном воздействии приблизительно в 2 раза меньше, чем для этих же сталей, содержащих 0,25% углерода (рис. 120). [c.211]

    И. Юранек и Б. Амброва [44] разработали газохроматографическую методику определения углерода и серы в техническом железе и его сплавах. Анализируемую пробу сжигали в токе кислорода, который одновременно использовали как газ-носитель. Образовавшиеся при сожжении газы (двуокись и окись углерода и двуокись серы) хроматографически разделяли на колонке с силикагелем. Содержание газов записывали при помощи фотоколори-метрической ячейки. Такой способ позволяет определить содержание углерода в стали на 10 % при навеске 1 г. Возможно применение и меньших навесок. [c.160]

    Для определения углерода в стали взята навеска 0,8752 е. По бюретке, калиброванной на объем при i=16° и Р=760 мм рт. ст., найден объем 5,52 мл при 17° и 756,8 мм рт. ст. Запорная жидкость—10%-ный раствор HgSO . Найти процентное содержание углерода. [c.342]


Смотреть страницы где упоминается термин Углерод, определение в сталях тер: [c.38]    [c.44]    [c.8]    [c.10]    [c.506]    [c.88]   
Физико-химические методы анализа Изд4 (1964) -- [ c.0 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Сталь углерода



© 2025 chem21.info Реклама на сайте