Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ингибиторы механизм действия

    Механизм действия ингибиторов коррозии [c.213]

    Из кислородсодержащих соединений противоокислительными свойствами обладают также хиноны. Механизм действия хп-нонов связан с их способностью присоединять углеводородные радикалы и таким образом препятствовать развитию окислительной цепи. Эффективность хинонов как ингибиторов окисления, однако, невелика, так как скорость реакции [c.86]


    Конкурентные ингибиторы, механизм действия, изменение кинетики ферментативного катализа, примеры. Конкурентные ингибиторы как лекарственные препараты. [c.83]

    Неконкурентные ингибиторы, механизм действия, изменение кинетики ферментативного катализа. [c.83]

    Ингибиторы асфальтосмолистых и парафиновых отложений,. способные предотвратить отложения, более перспективны, чем растворители. По механизму действия они подразделяются иа три группы смачивающие агенты, депрессаторы и модификаторы. [c.191]

    Одни катализаторы сильно ускоряют реакцию — положительный катализ, или просто катализ, другие — замедляют — отрицательный катализ. Примерами положительного катализа могут служить получение серной кислоты, окисление аммиака в азотную кислоту с помощью платинового катализатора и др. Примерами отрицательного катализа являются замедление взаимодействия раствора сульфита натрия с кислородом воздуха в присутствии этилового спирта или уменьшение скорости разложения пероксида водорода в присутствии небольших количеств серной кислоты (0,0001 мае. частей) и др. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, снижающие скорость реакции,— ингибиторами (механизм действия последних отличен от действия катализаторов). [c.94]

    Таким образом, ингибиторы по их влиянию на щелевую коррозию можно разделить на две группы одна из них при концентрациях, достаточных для защиты открытой поверхности от коррозии, приводит к интенсивной коррозии металла в щели другая — уменьшает коррозию металла в щелях при любых концентрациях, так же как и на открытой поверхности. К первой группе относятся нитрит натрия, бихромат калия, двузамещенный фосфат и любые другие ингибиторы, которые защищают металл благодаря частичной пассивации электрода. Ко второй группе относятся сульфат цинка, нитрат кальция и другие ингибиторы, защищающие металлы от коррозии благодаря замедлению скорости катодной реакции. К этой группе ингибиторов можно, очевидно, отнести и такие анодные ингибиторы, механизм действия которых не связан с частичной пассивацией электрода, а обусловлен лишь уменьшением скорости анодной реакции, например, метаванадат натрия. [c.105]

    Процессы окисления молекулярным кислородом топлив, масел, смазок и специальных жидкостей при длительном хранении, транспортировании и в условиях эксплуатации техники имеют большое значение в химмотологии, так как в ряде случаев указанные процессы определяют соответствующие эксплуатационные свойства горюче-смазочных материалов, например химическую и физическую стабильность, воспламеняемость и горючесть, склонность к нагаро- и лакообразованию, охлаждающую способность, коррозионную активность. Поэтому изучение общих закономерностей и механизма окисления углеводородов, особенностей окисления топлив и смазочных материалов в условиях их применения, а также изучение механизма действия ингибиторов окисления занимает важное место в теоретических основах химмотологии. [c.23]


    В последнем случае образуются соединения, близкие к описанным ранее для 2,6-ди-трет-бутил-4-метилфенола (ионола). Предложенное объяснение противоокислительных свойств алкилфенолов укладывается в общую схему радикально-цепного механизма действия ингибиторов окисления. [c.86]

    Отдельную группу образуют пассиваторы, действующие в содержащих кислород и бескислородных растворах. Пассиваторы уменьшают скорость коррозии гораздо интенсивнее, чей органические ингибиторы. Механизм действия их связан с образованием плотной кислородной оболочки на поверхности металла, которая задерживает переход ионов металла в раствор. К ним относятся хроматы и нитриты, действующие как окислители. Эти вещества вызывают образование на поверхности железа и стали окиси железа. Пассиваторы принадлежат к так называемым "опасным" ингибиторам, поскольку при очень малых концентрациях они способствуют образованию коррозионных язв. [c.5]

    Современный взгляд на механизм действия противоокислителей исходит из представления об окислении углеводородов как о цепном процессе, в котором зарождение цепей и их развитие идут с участием свободных радикалов (см. раздел 2.1). Все, что может способствовать превращению радикалов в стабильные молекулы и таким образом мешает регенерации радикалов или затрудняет их образование и накопление в продукте, должно тормозить окисление. Чтобы противоокислитель мог предохранять топливо или масло от окисления, его действие должно быть направлено на обрыв реакционной цепи путем уменьшения количества образующихся радикалов. Предполагают, что такой ингибитор (1пН), будучи веществом активным, легко отдает свой водород радикалам основного окисляющегося вещества, переводя их таким образом в неактивное состояние и заменяя их радикалами 1п, не способными в силу своей относительно малой активности регенерировать радикалы и продолжать цепь  [c.80]

    Наконец, может происходить растворение компонентов защитных присадок в воде и торможение коррозии металлов в электролитах по электрохимическому механизму. В этом случае компоненты присадок будут выступать в роли водорастворимых ингибиторов коррозии. По этому механизму действуют многие ингибиторы атмосферной коррозии металлов. [c.293]

    Непосредственное отношение к химмотологии имеет поведение металлов (и защита их от коррозии) в контакте с топливами, смазочными материалами и специальными жидкостями, особенно в условиях эксплуатации двигателей и механизмов. В связи с этим в данной книге уделено внимание в основном теории коррозии металлов в нефтепродуктах и механизму действия ингибиторов коррозии в топливах и смазочных материалах. Отметим особо важную роль коррозионно-механического износа деталей двигателей и механизмов, который во многих случаях определяет ресурс их работы. [c.281]

    МЕХАНИЗМ ДЕЙСТВИЯ ИНГИБИТОРОВ КОРРОЗИИ В ТОПЛИВАХ И СМАЗОЧНЫХ МАТЕРИАЛАХ [c.291]

    Изложенные представления о механизме действия антиокислителей свидетельствуют о том, что добавление антиокислительных присадок не устраняет окисления углеводородных топлив, а замедляет его, удлиняя период индукции. С этой точки зрения антиокислители для бензинов можно подразделить [66] на продукты, преимущественно тормозящие собственно окислительные реакции (идущие со значительным расходом кислорода) — антиокислители , и продукты, преимущественно тормозящие вторичные процессы (полимеризации, конденсации), которые приводят к образованию смол — ингибиторы смолообразования . К первым из топливных замедлителей окисления относятся главным образом амины и некоторые аминофенолы, ко вторым — фенолы. Аминофенолы и экранированные алкилфенолы проявляют, как правило, и те, и другие функции. [c.234]

    МЕХАНИЗМ ДЕЙСТВИЯ ИНГИБИТОРОВ ОКИСЛЕНИЯ [c.97]

    Механизм регенерации, строго говоря, остается неясным, однако сам факт регенерации ингибитора под действием именно ROa- убедительно доказан. [c.121]

    Механизм действия органических ингибиторов объясняется двояко  [c.213]

    Механизм действия ингибиторов [c.238]

    Наиболее эффективными и широко применяемыми антиокислительными присадками к маслам являются именно ингибиторы окисления, поэтому рассмотрим механизм действия отдельных представителей этой группы подробнее. В качестве ингибиторов окисления масел применяются алкилфенолы, амины, серу- и фосфорсодержащие соединения и др. ио механизму действия этих соединения неодинаковы. [c.60]

    В последнее время появились экспериментальные данные, не укладывающиеся в рамки указанного механизма действия алкил-. фенольных ингибиторов (непосредственный гомолитический отрыв водорода гидроксильной группы пероксидными радикалами). Поэтому был предложен иной механизм взаимодействия радикала ROO- с молекулами ингибитора, так называемый механизм прилипания . Согласно этому механизму, пероксидный радикал сначала прилипает к молекуле ингибитора по обратимой реакции, а затем образовавшийся радикал-комплекс реагирует со следующим пероксидным радикалом  [c.61]

    Н2О2 в присутствии небольших количеств серной кислоты (0,0001 мае. ч). Отрицательный катализ часто называют и н-гибированием, а отрицательные катализаторы, снижающие скорость реакции, — ингибиторами (механизм действия последних отличен от катализаторов). [c.85]


    Модификаторы - наиболее эффективные ингибиторы парафиновых отложений. Они позволяют удерживать парафины во взвешенном состоянии на всем пути движения нефтеконденсатной смеси. В качестве модификаторов используют химические вещества, имеющие структуру, сходную с парафином, т.е. длинную цепочку углеводородных радикалов. В зарубежной практике широко используют полиэтилен в сочетании с другими ингибиторами. Механизм действия обусловливается сходством молекулярных структур парафина и полимера, за счет чего молекула полиэтилена легко внедряется в кристалл парафина и снижает силы когезии и адгезии [8]. [c.25]

    В реакциях окисления молекулярным кислородом, как и в других цеиных процессах, обрыв реакционной цепи осуществляется не только путем рекомбинации радикалов, но и вследствие их взаимодействия с ингибиторами. Механизм действия значительной группы ингибиторов удовлетворительно объясняется теорией цепных реакций И. И. Семенова, согласно которой обрыв цепи ингибиторами можно рассматривать как частный случай передачи цепи с образованием менее активного свободного радикала [1, 2]. Такой механизм вполне приемлем для ингибиторов, в молекуле которых содержится подвижный атом водорода. Однако имеющийся в литературе опытный материал показывает, что ингибиторами окисления молекулярным кислородом могут служить вещества самой различной химической природы (фенолы, амины, аминофенолы, органические и минеральные кислоты, вода, хиноны, сульфиды и др.). Кроме того, нужно учитывать, что в реальных условиях автоокислепия углеводородов в реакционной среде возможно одновременное существование не только свободных радикалов типа R, R0, ROO, НО, Н00 , но и неустойчивых перекисных соединений типа ROOR, которые в свою очередь могут непосредственно реагировать с молекулами ингибитора. [c.94]

    Картина полностью меняется при наличии ингибитора. Механизм действия ингибиторов в присутствии сероводорода, вероятнее всего, сводится к тому, что адсорбированные поверхностью металла ионы Н8 выполняют роль соединительного мостика между атомами металла и катионами ингибитора [55]. В качестве мостика могут быть различные анионы, в частности 8 , Н8, СГ и другие анионы [51]. Кроме того, согласно электронографическим исследованиям, сульфидная пленка на поверхности металла в зависимости от концентрации сероводорода имеет различную структуру [67]. При более высоких концентрациях сероводорода, когда образуются одновременно три разновидности сульфида железа (пирит или марказит РеЗг, троилит РеВ и канзит Рс988) проявляется эффект синергизма, т.е. фазовая пленка сульфида железа принимает непосредственное участие в формировании более прочной защитной пленки ингибитора, являясь необходимой ее составной частью и поэтому при высоких концентрациях сероводорода скорость коррозии как с 1,1,2-алкил-, так и с 1,3,4-алкенилзамещенным цикло-гексаном меньше степень защиты Ъ = 99,0 %. При этом характер коррозионного разрушения зависит от анионного состава электролита. Хлоридная среда вызывает локальные разрушения - округлые светлые пятна в ацетатной пораженные участки развиваются и занимают большую часть поверхности (при увеличении в 600 раз). При наличии ингибитора площадь очагов резко уменьшается и они становятся более четко очерченными. [c.34]

    Следует отметить, что то отставание между применением присадок и теоретическими исследованиями в области химии присадок, которое имелось ранее, в настоящее время уменьшилось. Уже накопился достаточный опыт изучения механизма действия различного типа присадок, а также имеются значительные результаты в этой области, позволяющие в той или иной степени прогнозировать направленный синтез эффективных присадок. Но, естественно, для полного решения проблемы направленного синтеза присадок необходимо проведение более глубоких исследований механизма их действия. Кроме того, необходимо раскрыть сущность многих явлений, которые наблюдаются в практике применения присадок. К таким явлениям можно отнести эффекты синергизма, при котором действие смесей присадок оказывается большим, чем можно было ожидать при аддитивном действии компонентов смеси. Например, известны синергетические смеси ингибиторов окисления — ароматических аминов и фенолов, эффект синергизма наблюдается при совместном применении сукцин-имидной присадки с антиокислительной присадкой диалкилдитио-фосфатного типа и др. Этим явлением, найденным эмпирическ 1м путем, мы уже пользуемся на практике, однако механизм синергизма изучен крайне недостаточно. Между тем исследования в этом направлении являются чрезвычайно актуальными, поскольку установление механизма этого явления открывает возможность научно обоснованного подбора эффективных композиций присадок. [c.12]

    Кроме веществ, непосредственно влияющих на обрыв реакционных окислительных цепей и которые можно было бы назвать истинными ингибиторами окисления, к противоокислите-лям следует отнести и ряд соединений, механизм действия которых отличается от рассмотренного выше, но которые тоже снижают окисляемость масла. Например, все вещества, способные уменьшить активность металлических катализаторов окисления, могут рассматриваться как противоокислители. К таковым следует отнести вещества (пассиваторы, или деактиваторы), образующие адсорбционные или химически связанные пленки на поверхности металлов и таким образом исключающие катализирующую роль последних при окислении углеводородов, а также переводящие в неактивное состояние соединения металлов, растворенные в топливе или масле и являющиеся гомогенными катализаторами окисления [96]. [c.83]

    И за рубежом. Ионол применяется в нашей стране в качестве противоокислительной присадки к реактивным топливам, бензинам, гидравлическим, трансформаторным и другим маслам. По механизму действия он относится к ингибиторам окисления третьей группы. В автомобильные бензины для повышения их противоокислительной стабильности добавляют фенолы или ФЧ-16 — древесно-смольный противоокислитель, содержащий не менее 60% фенолов. [c.85]

    Первый тип ингибиторов осуществл51ет частичное или полное торможение цепного процесса окисления за счет взаимодействия с радикалами R-, R0 ROO. Однако в литературе при рассмотрении механизма действия ингибиторов обычно рассматривается случай, когда ингибитор взаи.модействует с радикалами ROO. Видимо, эффективный ингибитор должен обладать способностью реагировать со всеми тремя типами свободных радикалов и, в частности, с радикалами R0, которые, как было указано выше, являются ответственными за процесс деструкции полимерной цепи. Скорость обрыва цепи при применении подобных ингибиторов пропорциональна концентрации активных свободных радикалов в первой степени. Поэтому они часто называются ингибиторами, действующими по механизму линейного обрыва цепи. Для оценки эффективности этих ингибиторов определяющее значение имеет соотношение констант скоростей элементарных реакций Й2 и e . [c.622]

    По кинетическому механизму действия противокоррозионные присадки подразделяются на иммунизаторы, ингибиторы и пасси-ваторы [30]. К иммунизаторам относят вещества, при добавлении которых к бензинам удлиняется период-индукции до начала интенсивной коррозии ингибиторы замедляют скорость коррозии, но не увеличивают индукционный период, а пассиваторы предотвращают коррозию в самом начале, образуя защитную пленку продуктов коррозии на поверхности металла [44]. В качестве противокоррозионных присадок к бензинам исследованы и предложены многие вещества самых различных классов [51—61]. [c.306]

    Эффективность тормозяш,его действия InH. Степень торможения в каждом опыте зависит от ингибитора, механизма его действия, его концентрации, окисляющегося вещества и условий окисления. Для сравнения ингибиторов по их эффективности необходимо знать 1) ключевые реакции, которые определяют механизм ингибированного окисления 2) характер зависимости скорости ингибированного окисления от концентрации ингибитора и других реагентов (RH, Ог, ROOH, инициатор). Для ингибиторов, обрывающих цепи окисления, степень тормозящего действия можно характеризовать параметром F, который равен отношению скорости обрыва цепей на ингибиторе к скорости обрыва цепей в тех же условиях без него [165]. [c.133]

    В этой функции условия опыта фигурируют в виде концентраций реагентов, ингибитора и скорости инициирования, а показатели степени /Irh, Лгпн и др. зависят от механизма действия ингибитора. Коэффициент а можно рассматривать как количественное выражение эффективности тормозящего действия ингибитора в данных условиях. Зависимость F от Vt, [InH], [О2] и т.д. позволяет выявить ключевые реакции, определяющие механизм обрыва цепей в данных условиях. Если радикалы ингибитора не участвуют в продолжении цепей, т. е. [c.134]

    Для случая, когда ингибитор обрывает цепи, реагируя с КОг-, а образующиеся In- неактивны, а = 1пн//гр [RH], т. е. прямо пропорциональна kinu, и чем быстрее ингибитор реагирует с КОг-, тем он эффективнее. С вовлечением In- в реакции продолжения цепей меняется зависимость F от условий проведения реакции окисления, меняется и выражение для коэффициента а. Поэтому а пригоден как критерий эффективности ингибиторов только для ингибиторов с одинаковым механизмом действия. Чем выще а, тем эффективнее ингибитор. [c.136]

    Механизм действия ингибиторов отложений солей связан с процессами диффузии в растворе и последующей адсорбцией на поверхности микрочастичек солей. Процесс сорбции поверхностью частиц молекул ингибитора сопровождается образованием достаточно устойчивых ассоциаций. [c.238]

    Вопрос о механизме действия активаторов в процессе карбамидной депарафинизации до сих пор является дискуссионным. Выдвинут ряд гипотез, объясняющих роль активаторов при комплексообразовании веществ с карбамидом. Так, авторы работ [3, 64] считают, что активаторы пассивируют действие ингибиторов комплексообразования, растворяя карбамид и тем самым препятствуя адсорбции неуглеводородных примесей на го кристаллах. Действие активаторов объясняют их способностью образовать од- [c.216]

    Механизм действия сернистых ингибиторов, не содержащих аминных и фенольных группировок, объясняется их разрушающим действием на гидропероксиды, когда образуются стабильные молекулы. Например, сульфиды при взаимодействии с гидропероксидами образуют сульфоксиды, которые в дальнейшем окисляются до сульфонов  [c.63]

    Как было указано выше, к другой группе антиокислительных присадок относятся дезактиваторы и пас иваторы, механизм действия которых отличается от механизма действия ингибиторов окисления [26]. Дезактиваторы предотвращают или уменьшают каталитическое действие маслорастворнмых соединений металлов за счет образования клешневидных комплексов, в которых атом металла сильно экранирован [27]. Механизм действия пассиваторов связан с образованием на поверхности металла хемосорбированной пленки, предохраняющей масло от каталитического действия металла [25, с. 238]. [c.65]


Смотреть страницы где упоминается термин Ингибиторы механизм действия: [c.67]    [c.67]    [c.19]    [c.304]    [c.134]    [c.93]    [c.53]    [c.60]   
Кинетика и катализ (1963) -- [ c.269 , c.271 ]

Современные и перспективные углеводородные реактивные и дизельные топлива (1968) -- [ c.286 , c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Более сложные механизмы действия обратимых ингибиторов

Ингибиторы атмосферной коррозия, их классификация и основное применение Общая классификация и механизм действия ингибиторов атмосферной коррозии

Ингибиторы коррозии и механизм их защитного действия

Ингибиторы ферментов, механизм действия

Исследование механизма действия катализаторов и ингибиторов в газофазном окислении углеводородов

МЕХАНИЗМ ДЕЙСТВИЯ ПРИСАДОК О механизме действия ингибиторов окисления. Р. А. Липштейн

Механизм действия

Механизм действия и виды маслорастворимых ингибиторов коррозии

Механизм действия ингибиторов вулканизации

Механизм действия ингибиторов коррозии

Механизм действия ингибиторов окисления

Механизм действия ингибиторов пыления и их эффективность

Механизм действия ингибиторов сероводородной коррозии

Механизм действия маслорастворимых ингибиторов

Механизм действия нитрованных масел как маслорастворимых ингибиторов коррозии

Механизм защитного действия ингибиторов

Механизм защитного действия окислительных ингибиторов

О механизме действия ингибиторов ржавления

Представления о механизме защитного действия ингибиторов

Рафиков и В. В. Суворов. К вопросу о механизме действия ингибиторов окисления молекулярным кислородом

Связь механизма действия ингибиторов с кинетикой их адсорбции на металле

Эмануэль. Макроскопические стадии, особая роль начального периода и механизм действия ингибиторов и положительных катализаторов в цепных реакциях



© 2024 chem21.info Реклама на сайте