Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Защита металлов от коррозии химическая

    Методы защиты от коррозии. Защитные покрытия — изоляция металла от агрессивной среды с помощью различных покрытий. Защитные покрытия можно разделить на следующие три основные группы металлические, неметаллические, химические. [c.228]

    Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно при работе в щелочных растворах и большинстве органических кислот. Поэтому покрытие серебром получило применение главным образом для улучшения электропроводящих свойств поверхности токонесущих деталей в электротехнической и радиоэлектронной отраслях промышленности, для сообщения поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозионного разрушения под действием щелочей и орга нических кислот, а также для декоративной цели с последующим оксидированием. Серебром чаще всего покрывают изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется. [c.422]


    Для защиты металлов от атмосферной коррозии широко применяют нанесение различных защитных неметаллических (смазки, лакокрасочные покрытия) и металлических (цинковых, никелевых, многослойных) покрытий или превращение поверхностного слоя металла в химическое соединение (окисел, фосфат), обладающее защитными свойствами. [c.383]

    Электрохимические процессы имеют большое практическое значение. Электролиз используется в металлургии легких и цветных металлов, в химической промышленности, в технологии гальванотехники. Химические источники тока широко применяются в быту и промышленности. Электрохимические процессы лежат в основе многих современных методов научного исследования и анализа. Новая отрасль техники — хемотроника — занимается созданием электрохимических преобразователей информации. Одной из важнейших задач электрохимии является изучение коррозии и разработка эффективных методов защиты металлов. В неравновесных условиях в растворе электролита возникают явления переноса вещества. Основные виды переноса диффузия — перенос вещества, обусловленный неравенством значений химических потенциалов внутри системы или между системой и окружающей средой конвекция — перенос вещества под действием внешних механических сил миграция — перенос заряженных частиц в электрическом поле, обеспечивающий электрическую проводимость электролитов. [c.455]

    Макарова Л. Л. и др. // Коррозия и защита металлов в химической, нефтехимической промышленности и машиностроении Тез. докл. 5-й Омской областной научно-практ. конф. 18-20 мая 1988.— Омск.— 1988.- С. 31 [c.375]

    С использованием химических методов получают металлы, а также осуществляют их защиту от коррозии. Химические вещества помогают ускорить многие технологические процессы в пищевой и легкой промышленности. [c.11]

    Отсутствие руководства по вопросам защиты металла оборудования химических заводов в нейтральных водных средах, несомненно, затрудняет организацию борьбы с коррозией и загрязнением среды ее продуктами. Мы надеемся, что наша монография будет содействовать решению этой проблемы. [c.5]

    Электролитическое 3 рафинирование алю-л миния. Лучшие сор-та переплавленного алюминия содержат 99,8% А1, остальное Ре 51. Для некоторых целей желательно получать металл большей чистоты. При содержании 99,95% А1 и выше металл обладает очень высокой коррозионной устойчивостью. Поэтому он особенно пригоден для плакирования , т. е. нанесения покрытий для защиты от коррозии химической аппаратуры, деталей самолетов и пр. Будучи весьма пластичным, такой металл очень хорош для изготовления фольги. Многие ответственные детали механизмов изготовляют из алюминиевых сплавов, в которых присутствие железа и кремния нежелательно. Наконец, электролитические конденсаторы, изготовленные из алюминия высокой чистоты, обладают пониженной утечкой электричества. Все это заставило разработать методы рафинирования технического алюминия. [c.664]


    Особое внимание уделено проблеме создания и использования единых консервационно-рабочих масел, смазок и топлив, обеспечивающих защиту металлов от химической и электрохимической коррозии и уменьшающих износ деталей двигателей и механизмов как во время эксплуатации, так и во время их хранения. [c.2]

    Значительное количество антикоррозионных покрытий может быть изготовлено на базе галогенированных, циклизованных и других модифицированных каучуков. Они, как правило, обладают более высокой химической стойкостью, чем материалы на основе СК, не претерпевших химических превращений, но лишены высокой эластичности, а следовательно, и многих других ценных качеств, вытекающих из этого уникального свойства. В частности, из них трудно или невозможно получать покрытия такой толщины, которая гарантировала бы надежную защиту металлов от коррозионно-эрозионного износа. По этой причине в технике защиты от коррозии химического оборудования они самостоятельного значения не приобрели. [c.205]

    В книге описаны существующие методы и новейшие способы защиты металлов от химической и электрохимической коррозии. [c.2]

    Защита металлов от химической коррозии в основном заключается в их легировании добавками элементов, более стойких к окислению. Защита легированием основана на образовании соединений а) с малой дефектностью кристаллической решетки, обладающих низкими коэффициентами диффузии по отношению к корродирующему агенту б) с кристаллической решеткой шпинелей (типа двойных оксидов), обладающих повышенной химической стойкостью. Наиболее эффективными легирующими добавками, сообщающими железу жаростойкость, являются хром, титан, молибден, вольфрам, алюминий, тантал, ниобий. Благодаря их применению созданы коррозионностойкие стали для реактивной, ракетной, атомной и другой техники. [c.153]

    В настоящее время электрохимические методы широко применяются в различных областях современной техники, составляя основу прикладной электрохимии. Главными отраслями прикладной электрохимии являются электрометаллургия, гальванотехника, электросинтез органических и неорганических соединений, производство химических источников тока, электрохимическая размерная обработка металлов, хемотроника, электрохимические методы контроля и анализа, методы защиты от коррозии. Так как различные отрасли прикладной электрохимии находятся в тесной связи с кинетикой электродных процессов, целесообразно кратко остановиться на их характеристике. [c.11]

    Учебное пособие для студентов металлургических вузов и факультетов. Может быть полезно инженерно-техническим работникам проектных организаций, исследовательских институтов, металлургических заводов, предприятий химической промышленности, занимающимся защитой металлов от коррозии. [c.2]

    Поверхность изделий и сооружений из металлов при соприкосновении с окружающей средой подвергается механическому и химическому воздействию. Разрушение металлов, вызываемое последним, называется коррозией. Потери металла от коррозии огромны. поэтому ее изучение и разработка методов защиты металлов имеют особенно важное значение. [c.8]

    Ежегодно издается 48 выпусков следующих серий Коррозия и защита металлов. Промышленный органический синтез. Процессы и аппараты химических производств. Силикатные материалы. Синтетические высокополимерные материалы. Химия и переработка нефти и газа. Химия и технология неорганических веществ. Цветная металлургия. Целлюлозно-бумажная промышленность. [c.130]

    Электрохимическая защита. Этот метод защиты основан на тормо-н ии анодных или катодных реакций коррозионного процесса. (Электрохимическая защита осуществляется присоединением к защ1р щаемой конструкции металла с более отрицательным значением электродного потенциала — протектора, а также катодной или анодной поляризацией за счет извне приложенного тока Наиболее применима электрохимическая защита в коррозионных средах с хорошей электрической проводимостью. Катодная поляризация используется для защиты от коррозии подземных трубопроводов, кабелей. Катодную защиту применяют также к шлюзовым воротам, подводным лодкам, водным резервуарам, морским трубопроводам и оборудованию химических заводов. [c.221]

    Еще одна проблема — необходимость защиты нефтегазопроводов от коррозии — тоже была успешно решена отечественными специалистами. Ими создано несколько видов ингибиторов коррозии— химических веществ, которые представляют собой сложные органические молекулы такого состава, что с одной стороны о>1и родственны металлу и как бы прилипают к нему, а с другой — не позволяют воде, солям и кислороду приближаться к металлу и окислять его. [c.70]


    К способам защиты от коррозии часто относят использование неметаллических материалов, обладающих высокой химической стойкостью (асбоцемента, бетона, керамики, стекла, пластмассы и т. д.). Однако изготовление изделий из других материалов не может рассматриваться как способ защиты от коррозии — где нет металла, там нет и коррозии его. [c.19]

    Обработкой металлической иоверхности химическим или электрохимическим путем можно получить защитные иленки, обладающие сравнительно высокой коррозионной стойкостью в атмосферных условиях, в воде и в некоторых других слабоагрес-сивиых средах. К числу таких покрытий относятся оксидирование, фосфатирование, анодирование, химическое никелирование и др. В химическом маш1гностроенин эти виды защиты металлов применяются очень редко, главным образом для защиты от атмосферной коррозии, повышения износостойкости деталей, улучшения внешиего вида и т. и. [c.328]

    Значительный вклад в развитие электрохимии внесли также русские ученые. В. В. Петров (1761—1834) изучал электропроводность растворов, химические действия электрического тока, электрические явления в газах и т. п. С помощью созданного им крупнейшего для того времени химического источника тока в 1802 г. он открыл электрическую дугу. Б. С. Якоби (1801—1874) в 1834 г. изобрел электродвигатель, работавший на токе от химического источника. В 1838 г. он предложил гальванопластический метод (см. разд. У.П). П. Н. Яблочков (1848—1914) изобрел электродуговую лампу (1875 г., свеча Яблочкова ), работал над созданием химических источников тока, выдвинул (1877 г.) идею создания топливного элемента (см. разд. А.12). Н. А. Изгарышев (1884—1956) развил теорию химического источника тока, работал над проблемой защиты металлов от коррозии, открыл явление пассивности металлов в неводных растворах электролитов, и по праву считается одним из основателей электрохимии неводных растворов. А. Н. Фрумкин (1895—1971) разрабатывал вопросы кинетики электрохимических процессов, развил теорию строения двойного электрического слоя. [c.233]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Для повышения эффективности защиты металлов от химической коррозии в смазки вводят противокоррозионные присадки, образующие на металле защитные адсорбционные или хемосорбционные пленки. Выбор таких присадок всегда строго индивидуален и зависит от того, какой металл и от какого коррозионно-агрессивного вещества следует защищать. Так, для химической защиты черных металлов используют сульфиды и дисульфиды, для защиты свинца в присутствии аминов или свободных органических кислот — фосфиты и диалкилдитиофосфа-ты, для защиты меди и медных сплавов — производные бензтиазола и меркаптобензтиазола. Необходимо учитывать, что некоторые противокоррозионные присадки, защищающие металл от химической коррозии, в условиях электрохимических процессов могут усиливать коррозию металла. Так, при наличии электролита, окислитель- [c.134]

    Известно, что от К. м. безвозвратно теряется около 10% ежегодной доСычи металла, кроме дополнительных потерь, связанных с антикоррозионными мероприятиями и ликвидацией последствий от коррозии. По механизму коррозионного процесса различают К- м. химическую и электрохимическую. Под химической коррозией подразумевают взаимодействие металлов с жидкими или газообразными веществами на поверхности металла, не сопровождающееся возникновением электродных процессов на границе раздела фаз. Напрнмер, реакции нри высоких темперагурах с кислородом, галогенами, сероводородом, сернистым газом, диоксидом углерода или водяным паром. Под электрохимической коррозией подразумевают процессы взаимодействия металлов с электролитами в водных растворах или в расплавах. Для защиты от коррозии поверхность металла покрывают тонким слоем масляной краски, лаков, эмали, другого металла, используют ингибиторы коррозии, электрохимическую защиту металлов, вводят в сплавы новые элементы, сильно повышающие коррозионную устойчивость, такие как хром, марганец, кремний и др. [c.136]

    Защита от коррозии наружных и легкодоступных внутренних поверхностей изделий из черных и цветных металлов, а также поверхностей, имеющих химическое (анодирование, фосфатировз-ние, оксидирование) или металлическое (хромовое, цинковое и др.) покрытие [c.230]

    ОШцаТ мас са металлических материалов, используемых в виде различных изделий в мировом хозяйстве, очень велика. Поэтому, иесу.отря на то, что обычно скорость коррозии мала, ежегодно из-за коррозия безвозвратно теряются огромные количества ые-тaJ лa. По ориентировочным подсчетам мировая потеря металла от коррозии выражается величиной 20 миллионов тонн в год. По еш,е больший вред связан не с потерей металла, а с порчей изделий, вызываемой коррозией. Затраты иа ремонт или на замену деталей судов, автомобилей, аппаратуры химических производств, прибо-ро1 во много раз превышает стоимость металла, из которого оии изготовлены. Наконец, существенными бывают косвенные потери, вызванные коррозией. К ним можио отнести, например, утечку нефти илн газа из подвергшихся коррозии трубопроводов, порчу продуктов питания, потерю здоровья, а иногда и жизни людей в тех случаях, когда это вызвано коррозией. Таким образом, борьба с коррозией представляет собой важную народнохозяйственную проблему. Поэтому на защиту от коррозии тратятся большие средства. [c.554]

    С. А. Балезиным и др., выяснены многие важные стороны этого явления. Наряду с другими способами защиты металлов ингибиторы коррозии широко используются при химических методах очистки черных металлов от окалины и ржавчины при химической очистке паровых котлов от накипи. Так как замедлители коррозии уменьшают скорость растворения в кислоте самого металла, но не уменьшают скорости растворения ржавчины или накипи, то применение их в этих случаях сильно ослабляет коррозию. Действие ингибиторов коррозии в этих случаях объясняется тем, что они хорошо адсорбируются на поверхности самого металла, но не его солей или окислов. [c.461]

    Наибольший интерес в области защиты металлов от коррозии полимерами представляют пластические массы на основе фтороргаиических соединений. Такие пластмассы, как политетрафторэтилен (фторопласт-4) и политрифторхлорэтилен (фторопласт-3), а также ряд сополимеров на основе политетрафторэтилена с другими фторорганнческими полимерами (фтористым винилиденом, гексафторнолипропиленом и др.) обладают рядом столь ценных свойств (исключительно высокая химическая стойкость, высокая теплостойкость и др.), что это делает их непревзойденными материала.мн в антикоррозионной технике. [c.428]

    Приведены основные сведения по теории химической и электрохимичеокоЯ коррозии металлов. Дана краткая оценка коррозионной стойкости конструкционных материалов в различных условиях, рассмотрены принципы основных видов защиты металлов от коррозии, технология производства некоторых видов антикоррозионных работ и ремонта ос5ое дов0ния. [c.2]

    Поверхность изделий и сооружений из большинства металлов, приходя в соприкос1юаение с окружающей средой, подвергается механическому и химическому воздействию. Последнее вызывает разрушение — коррозию, что приводит к огромным потерям металлов. В настоящее время изучение коррозии и разработка методов защиты металлов от нее имеют особенно важное значение. [c.213]

    Металлические изделия при хранении и эксплуатации под воздействием окружающей среды (кислорода, влаги, химически активных продуктов) подвергаются коррозии и разрушаются. Нефтяные масла без присадок не в состоянии обеспечить длительную и надежную защиту этих изделий от коррозии. Чтобы улучшить защиту металлов от коррозии, в масла втаадят маслорастворимые органические вещества, препятствующие коррозии металлов в условиях атмосферного воздействия (электрохимической коррозии),— ингибиторы коррозии и под действием продуктов, содержащихся в маслах (химической коррозии), — противокоррозионные присадки. Ввиду различных причин коррозионного разрушения металлов приходится использовать в маслах присадки разных состава и механизма действия. [c.305]

    Патентные исследования и знакомство с публикациями по теме позволяют сделать вывод о незначительном на сегодняшний день количестве работ, специально посвященных разработке рецептур надпакерных жидкостей для нагнетательных скважин. В основном известные рецептурьс представляют собой водные растворы химических веществ (ингибиторов коррозии, поглотителей кислорода, бактерицидов и т.п.). Однако применение этих водных составов в условиях длительной эксплуатации нагнетательных скважин без принятия дополнительных мер коррозионной защиты, на наш взгляд, вряд ли будет эффективным. Более надежно защитить от коррозии металл межтрубного пространства нагнетательных скважин можно было бы, используя в качестве надпакерной жидкости специально подобранные углеводородные составы. Однако из подобных рецептур нам известны лмни) обратные водонефтяные эмульсии. [c.38]

    В учебнике изложены современные предстсвления о строении атомов и химической связи, химии твердого тела. Рассмотрены энер гетика и кинетика химических реакций, химия растворов, окислительно-восстановительные и электрохимические процессы, коррозия и защита металлов. Дается общая характеристика химических элементов и и.х соединений (простых, комплексных и органических). Освещается химия конструкционных, ядерных и электротехнических материалов, химия воды и топлива. [c.2]

    Борьба с коррозией является народнохозяйственной задачей, поэтому исследования теории коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Защита металлов от коррозии производится путем нанесения металлических покрытий из более стойких в данной среде металлов, нанесения лаков, красок, пластмасс и т. д. Среди различных методов защиты все большее значение приобретает пассивирование металлов. Некоторые металлы (Ре, N1, Сг, А1, и др.) в определенных условиях (состава и концентрации среды, /°, р) переходят в состояние высокой химической устойчивости, тогда как в исходных условиях ведут себя, как химически неустойчивые. Так, если железо погрузить в раствор разбавленной НМОз, то наблюдается интенсивное растворение металла. Однако при достижении некоторого предельного значения концентрации кислоты растворение металла прекращается и наблюдается переход его в пассивное состояние. При этом потенциал железа становится более положительным. Железо после пребы- [c.270]


Смотреть страницы где упоминается термин Защита металлов от коррозии химическая: [c.158]    [c.486]    [c.298]    [c.243]    [c.251]    [c.17]    [c.170]   
Технология электрохимических производств (1949) -- [ c.508 ]




ПОИСК





Смотрите так же термины и статьи:

Глава шестнадцатая. Коррозия и защита металлов. Химическая стойкость материалов

Защита металлов от коррозии

Защита от коррозии

Защита химическая

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов химическая

Коррозия химическая

Металлы химические

Химическая (газовая) коррозия металлов и методы защиты от нее

Химическая коррозия металлов . 38.5.2. Электрохимическая коррозия металлов . 38.5.3. Методы защиты от коррозии Минеральные удобрения



© 2025 chem21.info Реклама на сайте