Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналогия типовая

    Особенности химии кремния. Второй типический элемент IV группы — кремний — является типовым аналогом углерода. Как и у углерода, у атома кремния в невозбужденном состоянии на s-орбитали находятся два спаренных электрона, а р-орбитали имеют два иеспаренных электрона. Разница в том, что атом углерода располагает валентными электронами при главном квантовом числе 2, а атом кремния характеризуется таким же числом валентных электронов (4) при и=3. В связи с увеличением числа электронных слоев по сравнению с углеродом у кремния наблюдается рост атомного [c.197]


    VI группы являются неполными электронными аналогами. В то же время аналогия в электронном строении между типическими элементами и подгруппой селена более близкая. Они являются, как отмечено выше, не только групповыми, но и типовыми аналогами. Характер электронной аналогии в VI группе можно проиллюстрировать следующей схемой  [c.229]

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]

    Помимо отмеченных выше видов аналогии (групповая, типовая, слоевая, контракционная и горизонтальная) в периодической системе существует определенное сходство элементов, расположенных по диагонали,— так называемая диагональная аналогия. Наиболее известна аналогия в диагональных парах Ве—А1, В—Si. Диаго- [c.21]

    Первая группа Периодической системы характеризуется тем, что в ней размещаются элементы с резко отличными свойствами. С одной стороны, это литий и натрий, а также исключительно химически активные собственно щелочные металлы, а с другой — медь и такие благородные металлы, как серебро и золото. Все они объединяются групповой аналогией. Как и в других группах, между типическими элементами, а также элементами подгрупп калия и меди соответственно наблюдается типовая аналогия. Кроме того, металлы подгруппы калия являются слоевыми аналогами. Несколько отличается химия лития как первого типического и кайносимметричного элемента 1А-группы. Кроме того, имеет место диагональная аналогия между литием и магнием. Диагональными аналогами в узком [c.303]


    Время на проведение ремонта и осмотров оборудования в прерывном и непрерывном производстве определяется по типовому оборудованию по единым нормам . В этих нормах приводятся периодичность ремонтов, длительность простоя оборудования в ремонте и трудоемкость ремонта. По остальному оборудованию— по аналогии или на базе прогрессивных показателей предприятий. Если фактические результаты работы лучших ремонтных бригад на предприятии обеспечивают сокращение времени простоя оборудования в ремонте по сравнению с установленными отраслевыми нормами, то при расчете фонда времени должны быть учтены эти прогрессивные показатели. [c.150]

    Кремний. Особенности химии кремния. Второй типический элемент IV группы — кремний — является типовым аналогом углерода. Как и у углерода, у атома кремния в невозбужденном состоянии на 5-орбита/[и находят ся два спаренных электрона, а р-орбитали имеют два неспаренных электрона. Разница в том, что атом углерода располагает валентными электронами при главном квантовом числе 2, а атом кремния характеризуется тем же числом валентных электронов (4) при я = 3. В связи с увеличением числа электронных слоев по сравнению с углеродом у кремния наблюдаются рост атомного радиуса, понижение потенциала ионизации, уменьшение сродства к электрону и ОЭО. Возрастание радиуса ведет к увеличению длины и уменьшению прочности межатомных связей, особенно в гомоатомных соединениях, вследствие чего растет электрическая проводимость и сужается ширина запрещенной зоны. Поэтому углерод в виде алмаза представляет собой изолятор, а кремний — полупроводник. В целом переход от первого типического элемента ко второму свидетельствует о нарастании металличности и ослаблении неметаллических свойств. Однако вследствие наличия большого числа валентных электронов этот переход более плавный, чем в III группе от бора к алюминию. [c.369]

    Характеристика элементов подгруппы кальция. Элементы подгруппы кальция (щелочно-земельные металлы) характеризуются наибольшим сходством между собой, поскольку для них имеет место ие только групповая и типовая аналогия, но и слоевая. При наличии в атоме заполненной лз -орбитали, пр- и п—1) г-оболочки вакантны. ОЭО обсуждаемых элементов практически одинакова, равно как и значение стандартных электродных потенциалов. В целом от Са к Ва незначительно возрастает химическая активность элементов. Во многих отношениях щелочно-земельные элементы напоминают щелочные. Те и другие образуют солеобразные гидриды, их гидроксиды представляют собой сильные основания, они являются плохими комплексообразователями и т. д. [c.131]

    В химическом отношении радиоактивные элементы разнородны, поскольку они принадлежат к разным группам системы. Строго говоря, ИХ химические свойства можно было бы рассматривать совместно с их типовыми аналогами по группам. Однако при изучении [c.427]

    Групповая и типовая аналогии. Периодический закон является фундаментальным законом природы, отражающим единство количественной (заряд ядра, число электронов, атомная масса) и качественной (распределение электронов, совокупность свойств) характеристик элементов. [c.227]

    Типовая аналогия (аналогия между элементами в подгруппах), несомненно, характеризует более глубокое сходство между элементами по сравнению с групповой, что находит свое отражение в закономерностях изменения свойств как самих элементов, так и их соединений. Тем не менее и этот вид аналогии не полностью охватывает все особенности физико-химической природы отдельных элементов и их взаимосвязь с соседями по группе. [c.228]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]

    Уравнение (111.41) описывает простейший случай типового технологического варианта питания извне теплом или сырьем некоторых видов промышленных аппаратов. Более сложными аналогами [c.80]

    Как видно, при этом очень многое зависит от характера процесса, и поэтому для известных процессов принимают за основу образцовые печи. Для новых технологических процессов обычно приходится подбирать возможные аналогии, а также проводить опыты или строить экспериментальные печи. Для ориентировки в табл. 5-7 и 5-8 приведены данные по ряду работающих печей, а в табл. 5-9—5-11—данные серии типовых печей, выпускаемых отечественной промышленностью, которые можно при современном состоянии техники принимать в качестве исходных для расчетов. [c.133]


    В процессе моделирования используется свойство аналогичности представления моделируемого объекта и существующих моделей. Это свойство позволяет применять при моделировании и дальнейшем прогнозировании некоторого типового аналога с необходимым набором исходных данных и, связанных с ним, приемов анализа. Применение такого рода аналога обеспечивает достаточность информации для определения проблем и прогноза возможных состояний объекта и в то же время отбрасывает ненужные данные. [c.21]

    Анализ задачи по первым четырем частям АРИЗ резко упрощает задачу и во многих случаях делает ответ очевидным. Если этого не происходит, задач рассматривают по пятой части алгоритма — с привлечением информационного фонда — стандартов, физэффектов, типовых задач-аналогов. Наконец, если мини-задача вообще не может быть решена, переходят — по шестой части алгоритма — к макси-задаче. [c.144]

    Ранее было показано, что традиционное проектирование химических производств даже с использованием ЭВМ — весьма сложный и трудоемкий процесс, выполняемый различными специализированными коллективами проектировщиков. При этом один коллектив, например, занимается подбором катализаторов и определением параметров реакторов, другой — разрабатывает методы разделения продуктов хихмического превращения, третий — подбором материалов, оборудования и т. д. с широким привлечением аналогий и типовых решений. Выполненные исследования по отдельным узлам объединяются в технологические схемы и апробируются на лабораторных и пилотных установках. Результаты экспериментальных исследований в порядке обратной связи поступают к проектировщикам и являются основой для внесения изменений и усовершенствований на любой стадии обработки проекта. [c.29]

    Гидравлическое сопротивление трехфазного взвешенного слоя АРсл (Па) характеризуется сложной функциональной зависимостью от скоростей газа и жидкости, диаметра и плотности шаров, статической высоты насадки, свободного сечения решетки, физических свойств жидкости и газа. Сравнение типовой зависимости сопротивления противоточной решетки с пеной от скорости газа в режимах барботажа, вспенивания и волнообразования (см. рис. 1,1, стр. 35) с такой же зависимостью для трехфазного взвешенного слоя в ПАВН в режимах стационарного состояния, начального и развитого взвешивания насадки (рис. VI. 7) еще раз подтверждает, что ПАВН можно рассматривать, как противототаую решетку со взвешенным трехфазным слоем. Поэтому для расчета сопротивления ПАВН ДР (Па) в работах [27, 28] по аналогии с противоточными тарелками была принята зависимость вида  [c.249]

    В дальнейшем, по мере углубления теоретических представлений о свойствах атомов (эффекты проникновения и экранирования, р-, й-, /-контракция учение о кайносимметричных и некайносим-метричных орбиталях и др.), появилась возможность обосновать наряду с групповой, типовой и другими вертикальными аналогиями вторичную, внутреннюю и горизонтальную аналогии. Кроме того, были объяснены специфические особенности химии первых типических элементов, а также первого ряда элементов вставной декады . Таким образом, по мере углубления представлений о строении вещества открываются новые возможности в понимании периодического закона, который находится в постоянном развитии. Поражает интуиция Д. И. Менделеева, который в Основах химии писал Периодический закон не только ждет новых приложений, но и усовершенствований, подробной разработки и свежих сил... По-видимому, периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещается . [c.7]

    Групповая аналогия далеко не отражает всех особенностей элементов, входящих в данную группу, поскольку формируется она по наиболее общему признаку — числу валентных электронов — без учета типа валентных орбиталей. Эта аналогия пропадает для элементов в низших степенях окисления и тем более в свободном состоянии. Однако в пределах каждой группы можно выделить элементы, которые обладают более глубоким сходством между собой, Это сходство проявляется не только в высшей, но и во всех промежуточных степенях окисления, и обусловлено не только одинаковым числом валентных электронов, но и одинаковым типом орбиталей, на которых эти электроны расположены. По этому признаку и выделяются подгруппы элементов в пределах одной rpyinibi. Элементы, принадлежащие к одной подгруппе, обладают более близким сходством в свойствах, в основе которого лежит одинаковый тин валентных орбиталей, заполняющихся электронами. Эта более глубокая аналогия называется типовой аналогией. Таким образом, элементы, принадлежащие одной подгруппе, являются тип-аналогами, Так, в рассмотренном выше примере П1 группы бор, алюминий и подгруппа галлия, образующие главную под-грушту (или ПГА.-группу), являются тип-аналогами, поскольку для всех этих элементов характерен одинаковый тип валентных электронных орбиталей (ns np ). Элементы подгруппы скандия, образующие побочную подгруппу П1 группы (или И1В-группу), также являются между собой тип-апалогами [валентная электронная конфигурация ns (n—l)(i l. [c.9]

    Типовая аналогия (аналогия между элементами в подгруппах), несомненно, характеризует более глубокую аналогию между элементами по сравнению с гругиювой, что находит свое отражение в закономерностях изменения свойств как самих элементов, так и их соедине ний. Тем не менее и этот вид аналогии не полностью охватывает все особенности физико-химической природы отдельных элементов и их взаимосвязь с соседями ио группе. Объяснение этих особенностей требует более детального рассмотрения электронного строения атома, С точки зрения электронного строения атома [c.9]

    Водород — первый элемент и один из двух представителен первого периода системы. По электронной формуле Ь он ([юрмально относится к 5-элементам и является типовым аналогом типических элементов I группы (лития и натрия) и собственно щелочных металлов (подгруппа калия), Это обусловливает сходство оптических спектров водорода и щелочных металлов. Водород и металлы 1А-группы проявляют степень окисления +1, являются тиничн1)1мн восстановителями. Одна ко в состоянии однозарядного катиона Н (протона) водород не имеет аналогов. В металлах 1А-группы валентный электрон экранирован электронами внутренних орбиталей, У атома водорода отсутствует э( х зект экранирования, чем и объясняется уникальность его свойств. Кроме того, единственный электрон [c.96]

    Первая группа системы характеризуется тем, что в пей рг13 1еща-ются элементы с резко отличными свойствами. С одной стороны, это литий II натрий, а также исключительно химически активные собственно щелочные металлы, а с другой — медь и такие благород])ые элементы, как серебро и золото. Все оии объединяются групповой аналогией. Как и в других группах, между типическими элементами, а также элементами подгрупп калия и меди соответственно наблюдается типовая аналогия. Кроме того, металлы подгруппы калия являются слоевыми аналогами. Несколько отличается химия лития вследствие диагональной аналогии между литием и магнием. Диагональными аналогами в узком смысле являются натрий и кальций. С металлохимической точки зрения между элементами 1А- и 1В-групп также имеется существенное различие. Для металлов 1А-груипы вовсе не характерно образование широких областей твердых растворов с металлами других групп, а элементы подгруппы меди, наоборот, дают непрерывные илп ограниченные твердые растворы с широкими областями гомогенности. В то же время и те и другие металлы ие образуют фаз внедрения. [c.111]

    Третья группа элементов периодической системы — самая эле-мептоемкая. Она содержит 37 элемеитов, включая лантаноиды и актиноиды. Все элементы III группы, за исключением бора, являются металлами. Первый типический элемент бор — неметалл. В какой-то мере бор выполняет роль переходного элемента от металлического бериллия к углероду. Но 1юскольку у атома бора уже в нормальном состоянии на кайносимметричной 2уО-орбитали имеется один электрон (а в возбужденном состоянии 2 электрона), он функционирует как неметалл. Наконец, в третьей груние наблюдается наименьшая разница в свойствах элементов IIIА- и ШВ-групп. Элементы подгруппы галлия, как и А1, являются б р-металлами. В отличие от пих элементы подгруппы скандия принадлежат к sii-металлам. Но в характеристической степени окисления +3 элементы подгруппы галлия имеют внешнюю электронную конфигурацию (n—l)d а типовые аналоги скандия, как и А1(+3),— электронную структуру благородных газов Поэтому некоторые авторы располагают [c.137]

    В дальнейшем, по мере углубления теоретических представлений о свойствах атомов (эффекты проникновения и экранирования, р-, -, /-контракция, учение о кайносимметричных и некайносимметричных орбиталях и др.), появилась возможность обосновать наряду с групповой, типовой и другими вертикальными аналогиями вторичную, внутреннюю и горизонтальную аналогии. Кроме того, были объяснены специфические особенности химии первых типических элементов, а также первого ряда элементов вставных декад. Таким образом, по мере углубления представлений о строении вещества открываются новые возможности в понимании Периодического закона, который находится в постоянном развитии. [c.227]

    Подобным же образом можно представить характер электронной анилогии во всех группах Периодической системы . Отметим некоторые особенности характс -ра электронной аналогии, вытекаюгцие из приведенной схемы. -Элементы (1Л-и ПА-группы) являются полными электронными аналогами и в то же время проявляют групповую и типовую аналогию. Это обусловлено аналогичным строением электронных орбиталей у всех представителей одной группы. Заполненные [c.230]

    Совместное влияние кайносимметрии 3 -оболочки и лантаноидной контракции для -элементов 6-го периода (НГ — Hg) приводит к существованию более тонкого вида химической аналогии, чем рассмотренные ранее групповая, типовая и слоевая. Этот вид аналогии целесообразно назвать контракг ионной аналогией. Сущность его состоит в том, что пары Ъх — НГ, КЬ — Та, Мо — и т.д, обладают особенно близкими свойствами, а их более легкие аналоги — Т1, V, Сг и др, — отличаются от них. Эта закономерность хорошо иллюстрируется значениями металлических атомных радиусов, которые очень близки для элементов 5- и 6-го периодов. Именно контракционной аналогией объясняется тот факт, что элементы 21 — НГ, МЬ — Та часто называют элементами-близнецами, [c.233]

    Помимо отмеченных выше видов аналогии (групповая, типовая, слоевая, контракционная и горизонтальная) в Периодической системе существует определенное сходство элементов, расположенных по диагонали, — так называемая диагональная аналогия. Наиболее известна аналогия в диагональных парах — Mg, Ве — А1, В — 81. Диагональная аналогия может проявляться в двух формах сходстве общего химического характера элементов, проявляющемся во всех однотипных соединениях (диагональная аналогия в широком смысле), и в возможности изоморфного замещения диагональных аналогов в сложных соединениях (диагональная аналогия в узком смысле). Последний тип аналогии широко известен в геохимии. Диагональная аналогия в широком смысле обусловлена близостью энергетических (Д7, АЕ, ДОЭО) и размерных (ДОЭО/Дг) характеристик элементов-аналогов. В свою очередь, это определяется немонотонным изменением, например, электроотрицательности и орбитальных радиуЛв элементов по горизонтали (в периоде) и по вертикали (в группе). Причинами немонотонного изменения энергетических и силовых характеристик элементов, как обсуждалось выше, являются эффекты кайносимметрии, экранирования, проникновения внешних [c.237]

    Подгруппа галлия. Характеристика элементов подгруппы галлия. Подобно типическим элементгл , металлы подгруппы галлия являются р-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3<йиеталлов, для которых особенно сильна -контракция. [c.337]

    Расчеты капитальных затрат К и эксплуатационных расходов С на экологические мероприятия по формулам 4,17, 4,18, 4.19 несущественно отличаются от типовых. При вычислении величины капиталовложений некоторые затруднения может вызьгеать значительная доля нестандартного оборудования ввиду отсутствия аналогов в ценниках и прейскурантах. В таких случаях его стоимость устанавливается по договорным ценам на аналогичные материалы и выполненные работы. При оценке эксплуатационных затрат важно не упускать возможности их снижения за счет уменьшения потерь сырья с выбросами или утилизации уловленного продукта. [c.157]


Смотреть страницы где упоминается термин Аналогия типовая: [c.6]    [c.12]    [c.12]    [c.12]    [c.17]    [c.25]    [c.71]    [c.428]    [c.230]    [c.274]    [c.23]    [c.6]    [c.95]    [c.109]    [c.183]    [c.279]   
Неорганическая химия (1989) -- [ c.9 , c.12 , c.111 ]

Общая и неорганическая химия 1997 (1997) -- [ c.228 ]

Общая и неорганическая химия (2004) -- [ c.228 ]




ПОИСК







© 2024 chem21.info Реклама на сайте