Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Законы природы

    Вывод о недостаточности первого начала термодинамики для определения направления и предела протекания процессов привел к установлению второго начала термодинамики. Второе начало термодинамики, так же как и первое начало, является постулатом, обобщением опытных данных. Доказательством второго начала может служить то, что все выводы, вытекающие из него, до сих пор всегда находили подтверждение на опыте. В 1824 г. С. Карно установил основные положения второго начала термодинамики. В середине XIX в. Клаузиус, Томсон и Максвелл показали, что второе начало термодинамики — один из наиболее общих законов природы .  [c.109]


    Живые организмы подчиняются всем основным законам природы. К ннм полностью применим закон сохранения н превращения энергии, а также второе начало термодинамики. [c.75]

    Ломоносов выдвинул и обосновал целый ряд положений, которые легли в основу физической химии. Им впервые был открыт закон сохранения материи и движения — один из величайших законов природы. [c.8]

    Огромной заслугой Ломоносова перед наукой было то, что он первый количественно обосновал основной закон химических превращений— закон сохранения массы вещества. Его опыты с накаливанием металлов в запаянных сосудах дали экспериментальное доказательство правильности материалистического представления о неуничтожаемости вещества. Уже тогда Ломоносов подошел к обобщенному определению принципа сохранения материи и движения, получившего ныне всестороннее доказательство и признание как всеобщего закона природы. Впервые Ломоносов сформулировал этот закон в 1748 г. в письме к Л. Эйлеру и опубликовал его в 1756 г. Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимется, столько же присовокупигся к [c.13]

    Так как в настоящее время вселенная далека от тепловой смерти , хотя и движется только в направлении к ней, то, следовательно, вселенная имела начало, она возникла в противоречии со вторым законом термодинамики (имеющим абсолютное значение) в результате какого-то творческого акта, не подчиняющегося законам природы. [c.106]

    Процессы, которые в природе протекают сами собой, называются самопроизвольными или естественными. Процессы, которые требуют для своего протекания затраты энергии, называются несамопроизвольными. В изолированной системе, ввиду отсутствия внешнего воздействия, могут протекать только самопроизвольные процессы. Протекание таких процессов завершается равновесным состоянием, из которого сама система без сообщения ей энергии извне выйти уже не сможет. Определение условий, при которых будет протекать самопроизвольный процесс, и условий, при которых наступает состояние равновесия в системе, представляет большой теоретический и практический интерес. Но основании первого закона термодинамики нельзя сделать каких-либо выводов о направлении процесса и состоянии равновесия. Для выяснения этих вопросов используется второй закон термодинамики. Второй закон термодинамики, как и первый, — результат обобщения человеческого опыта и является одним из фундаментальных законов природы. Он был установлен в результате исследования коэффициента полезного действия тепловых машин. [c.218]

    При всех разнообразных переходах одних форм движения в другие точно соблюдается основной закон природы — закон вечности материи и ее движения. Этот закон распространяется на все виды материи и все формы ее движения ни один вид материи и ни одна форма движения не могут быть получены из ничего и превращены в ничто. Это положение подтверждено всем многовековым опытом науки. [c.13]


    Химическое производство характеризуется законами естествознания и общими экономическими законами. Применение последних для анализа экономики химической промышленности имеет такое же значение, как и использование законов природы. Для выявления [c.7]

    В основу любого техно-химического расчета положены два основных закона природы 3 а к о и сохранения веса (массы) вещества и закон сохранения энергии. На первом из этих законов базируется всякий материальный, на втором — всякий энергетический, (В том числе и тепловой баланс. [c.3]

    Таким образом, утверждение, по которому несамопроизвольные (отрицательные) процессы не могут быть единственным результатом совокупности процессов, оказывается нестрогим, а отрицательные процессы в макроскопических системах оказываются не невозможными, а крайне мало вероятными событиями. Второй закон термодинамики является, следовательно, не абсолютным законом природы подобно первому закону, а статистическим законом, который соблюдается с высокой степенью точности для значительных количеств молекул и тем менее применим, чем меньше размеры системы, являющейся объектом изучения. [c.105]

    Второе начало термодинамики — это общий закон природы, действие которого простирается на самые разные системы. Второе начало термодинамики носит статистический характер и применимо только к системам из большого числа частиц, т. е. таким, поведение которых подчиняется законам статистики. Второе начало получает более полное физическое разъяснение в статистической термодинамике. [c.109]

    В этой главе вы снова убедились, насколько знание химии важно для понимания вопросов, связанных с использованием природных ресурсов планеты. Очевидно, что решения, игнорирующие законы природы, обойдутся несоизмеримо дороже, чем любые ожидаемые доходы от такого решения. Химия не указывает одного простого и единственно правильного ответа на глобальные вопросы, но может помочь в разрешении таких проблем и способствует выбору правильного направления поиска. В результате можно найти более разумный вариант. [c.232]

    Число информационных иеременных, характеризующих функционирование некоторого одного элемента или подсистемы, всегда меньше числа ИП, входящих в математическую модель ХТС, поэтому для неявной функции fi справедливо соотношение к < т. Вследствие того, что число основных физических и химических законов природы, определяющих процесс функционирования ХТС, меньше числа переменных и параметров системы, а число элементов сложных ХТС всегда меньше числа технологических связей, для любой системы справедливо соотношение п т. [c.60]

    В результате тщательного изучения и глубокого анализа фактов Д. И. Менделеев сумел открыть один из самых общих законов природы. Он был настолько убежден в правильности своего открытия, что описал свойства некоторых неизвестных еще тогда элементов и исправил те атомные веса, которые были установлены неправильно. [c.39]

    В целях сосредоточения внимания читателя на осмыслении изучаемых законов природы авторы максимально упростили форму изложения. Для этого им пришлось отказаться от громоздкого математического аппарата, традиционно используемого в большинстве учебников физической химии. Однако такое упрощение не исключает серьезного научного подхода к предмету, но позволяет выдвинуть на первый план смысловое содержание обсуждаемых законов природы их физическую сущность и общенаучное значение. [c.3]

    Для расчета степени поражения человека при воздействии на среду его обитания физических нагрузок - тепловых, ударных, осколочных или токсических необходимо привлекать эмпирические закономерности, распространяя их (используя фундаментальные законы природы. - Перев.) на произвольные ситуации. Например, особенности такого перенесения для токсических нагрузок обсуждались в гл. 14. [c.488]

    По-видимому, имеются в виду расчеты, основанные лишь на первых принципах -фундаментальных законах природы - Прим. ред. [c.488]

    В необратимых термодинамических процессах полезная работа меньше, а теплота процесса больше, чем в обратимых процессах (см. разд. 11.22). Таким образом, согласно законам природы, теплота, теряемая системой при проявлении некоторой необратимости процесса, возрастает, а поглощаемая теплота уменьшается. Поскольку величина изменения состояния системы не зависит от характера протекания процесса, то изменение энтропии системы (как функции состояния), вне зависимости от характера протекания процесса остается одним и тем же. Из этого следует, что равенство (П.55) в приложении к необратимым термодинамическим процессам превращается в неравенство [c.96]

    ГИПОТЕТИЧЕСКАЯ АВАРИЯ - произвольная авария, порожденная незапрещенными законами природы инициирующими со(>ытиями. [c.591]

    Таким образом, существующее противоречие между удивительной простотой фундаментальных законов природы и сложностью математических моделей может быть разрешено путем развития феноменологического подхода к моделированию сложных систем. [c.64]

    Уходящее двадцатое столетие показало, как познанные наукой фундаментальные законы природы, физические явления, переложенные на язык техники, становятся мощными рычагами прогресса человечества. Но порождаемые при этом технологии, к сожалению, нерационально использовали окружающую природную среду, разрушая тем самым основу всего живого. [c.27]

    Описанный закон природы наряду с принципом минимума свободной энергии положен в основу второго закона термодинамики и выражает качественную неэквивалентность теплоты и работы. На рис. 11.8 приводится графическое описание вышеизложенного. Пусть некоторой термодинамической системе сообщается энергия в форме теплоты или работы (Qp или Ц7), в результате чего энтальпия системы возрастает на ЛЯ (отрезок АО), а ее внутренняя энергия — на Ли (отрезок АС). [c.86]


    Из закона сохранения энергии вытекаег еще одна формулировка первого закона термодинамики —невозможность создания вечного двигателя (perpetuum mobile) первого рода, который производил бы работу, не затрачивая на это энергии. В раскрытии первого закона термодинамики как фундаментального закона природы сыграли большую роль работы Гесса (1840), Майера (1842), Джоуля (1847), Гельмгольца ( 847) и др. В частности, Джоуль обосновал первый закон термодинамики, исходя из опытов превращения механической энергии в теплоту. [c.191]

    Фазовые переходы и связанные с ними критические явления являют собой яркие примеры единства и универсальности законов природы. Современная теория фазовых переходов является не только достоянием физики конденсированного состояния, Методы теории фазовых переходов все чаще применяются в различных областях естествознания, технических и даже в гуманитарных науках. Объединяют явления адгезии и фазовых переходов межфазные процессы массопереноса и межфазные взаимодействия. Особо велико значение теории фазовых переходов и адгезии для технологии получения композиционных и полимерных материалов с заданными свойствами. К сожалению, в большинстве образовательных и специальных курсов по физики и химии полимеров, а также теоретических основ технологии композиционных материа юв, волокон и полимеров, адгезии и фазовым переходам не уделяется должное внимание. Цель данного материала ознакомить учащихся и специалистов с основами теории. Поэтому в разделах 1 и 3 приведен обзор современных теорий. В части 2 и 4 приведены результаты, полученные авторами. [c.4]

    Таким образом, в природе идет вечное рождение, превращение и распад ядер атомов Бытующее сегодня мнение о разовом акте происхождения химических элементов, по мень-ш й мере, некорректно. В действительности, атомы вечно (и постоянно ) рождаются, вечно (и постоянно ) умирают, и их набор в природе остается неизменным. "В природе нет приоритета возникновению или разрушению — одно возникает, другое — разрушается" [2, с. 110]. Выражаясь фигурально "Природа — улица с двусторонним движением". Прогрессив-нс<е развитие и регрессивное изменение одинаково закономерны и равноправны. Они протекают одновременно (даже в одном объекте) и находятся в подвижном равновесии, зависящем от внешних условий. Думается, принцип Ле-Шателье имеет более широкое применение, чем только для равновесных химических реакций. Он может претендовать на статус "всеобщего закона природы". [c.86]

    М. Б. Ломоносов (1711 — 1765) впервые стал систематически применять весы при изучении химических реакций. Б 1756 г. он экспериментально установил один из основных законов природы — закон сохранения массы вещества, составивший основу количественного анализа и имеющий огромное значение для всей науки. М. В. Ломоносов разработал многие приемы химического анализа и исследования, не потерявшие значения до наших дней [c.8]

    Гомологические ряды являются своеобразным и ярким примером выражения в области химической формы движения материи одного из основных диалектических законов — закона перехода количественных изменений в качественные. Включение в молек лу каждой следуюоюй СНд-группы вызывает закономерное изменение свойств, т. е. наблюдается переход количества в качество. Ф. Энгельс писал Химию можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава . Этот основной закон природы, по словам Энгельса, празднует в химии свои величайшие триумфы . [c.42]

    Назовите закон механики, который подобен принципу Ле Шателье— Брауна. Какие еще подобные законы природы Вам известны  [c.151]

    ЭКОЛОГИЧЕСКИЙ РИСК — в экологическом праве допущение вероятности причинения вреда природной среде ради достижения экологического или экономического эффекта. Нормальный экологический риск — основанное на познании и правильном использовании законов природы допущение вероятности причинения вреда при условии отсутствия серьезных необратимых последствий, реальной возможности воспроизводства потерянных природных ресурсов. [c.406]

    В основе данного метода лежит свойство изоморфизма дифференциальных уравнений, являющееся отражением единства законов природы. Это свойство заключается в том, что с помощью системы однотипных дифференциальных уравнений можно описывать различные по своей физической сущности явления. Напрнмер, аналогичные уравнения применимы для описания полей скоростей, температур, концентраций и т. д. [c.74]

    В книге также раскрыта единая концептуальная природа "периодичности", открытой Д. И. Менделеевым, и закона "О повторяемости в развитии". Убедительно показано, что периодичность (в том числе и Периодический закон) - только частный случай более широкого закона природы "О повторяемости...", одним из проявлений которого является спиральность в развитии. [c.2]

    Однако проводить резкую грань между органической и неорганической химией не следует. И тут и там действуют одни и те же законы природы. Среди органических соединений встречаются вещества, которые изучают и в курсе неорганической химии. Но при ЭТОМ необходимо помнить, что органическая химия — наука о более высокой форме организации материи. И в этом ее отличительная особенность. [c.6]

    Первый закон термодинамики, строго установленный Мейером (называемый в физике также законом сохранения энергии), утверждает, что энергия не исчезает и не создается, а переходит из одной формы в другую, другими словами, невозможно создать вечный двигатель первого рода . Воспользовавшись представлениями, развитыми в гл. 18 о функциях состояния [уравнения (174) и (180)], можно сформулировать первый закон термодинамики следующим образом внутренняя энергия системы есть функция состояния. Если бы внутренняя энергия не была функцией состояния, то при ее изменении в круговом процессе можно было бы получить дополнительное количество энергии, т. е. создать вечный двигатель первого рода , что противоречит первому закону термодинамики (одному из основных законов природы). [c.217]

    Основная цель книги — максимально вскрыть содержание законов природы, показать их диалектическую целостность, выявить широкие возможности их использования в решении практических задач, намеченных Комплексной программой химизации СССР на период до 2000 года . Авторы надеются, что этот учебник даст читателю прочную основу для дальнейшего изучения химических дисциплин и направит его деятельность на 1 3 [c.3]

    Закон сохранения энергии является всеобщим законом природы он применим как к микросистемам, так и к макросистемам. Все попытки ученых, стоящих на позициях идеализма, опровергнуть закон сохранения энергии оканчивались крахом. Последняя такая попытка была предпринята в 1936 г. Шенкледом на основании опытов по исследованию Комптон-эффекта, которые, как показали дальнейшие исследования, оказались ошибочными. Абсолютное значение внутренней энергии не может быть определено. В связи с этим при рас-счетах всегда оперируют ее изменением — II1 = А11, где О1 и Уг — значения внутренней энергии в начальном и конечном состояниях системы соответственно А — конечное изменение свойства системы (здесь конечное изменение внутренней энергии). Бесконечно малое изменение внутренней энергии будем обозначать через (11/. Так как внутренняя энергия является функцией состояния, то йИ будет и полным дифференциалом. Величина А.11 (И1) считается положительной, если внутренняя энергия системы при протекании в ней процесса возрастает, и отрицательной, если убывает. [c.186]

    Законы сохранения и взаимосвязи массы и энергии. В основе современного естествознания лежит общий принцип сохранения материи и движения, который был сформулирован Д. В. Ломоносовым в 1748 г. Все совершаюпщеся в природе изменения происходят так, что сколько к чему прибавилось, столько же отнимается от другого... Этот всеобщий закон природы распространяется и иа правила движения . [c.12]

    Открытие периодического закона и создание систем1>1 химических элементов имело огромное значение не только для химии, но и для философии, для всего нашего миропонимания. Менделеев показал, что химические элементы составляют стройную систему, в основе которой лежит фундаментальный закон природы. В этом нашло выражение положение материалистической диалектики о взаимосвязи и взаимообусловленности явлений природы. Вскрывая [c.55]

    Развитие, в котором имеет место как поступательное движение вперед, так и возвраты к старому (попятность), называется в диалектико-материалистической теории познания противоречивым развитием. В его основе лежат две противоположные тенденции (противоборствующие силы) — поступательность (непрерывность) и попятность (возвраты). В свете этого учения, периодичность изменения свойств химических элементов является только частным случаем более широкого явления природы — повторяемости. Периодичность — это повторяемость от периода к периоду. Следовательно, Периодический закон — только частный случай более широкого закона природы, закона повторяемости в процессе развития в природе, обществе и познании. [c.150]

    В последние годы нашего века нелинейные явления вызывают особый интерес у специалистов самых различных областей знаний [1-5]. Как правило, внимание исследователей сосредоточено на термодинамическом и математическом аспекте проблемы. Например, применяют теории бифуркаций, нелинейных колебаний, методы неравновесной термодинамики. Парадокс изучения не слишком далеких от равновесия сложных физико-химических и технических систем (СФХТС), по моему мнению, заключается в том, что с усложнением системы усиливается ее линейность. В самом деле, основные законы природы линейны, либо описываются простыми уравнениями, в которых степень аргумента не выше четвертой. Сложные уравнения функциональных связей в природе скорее исключение, чем правило. Фундаментальные уравнения физики обычно имеют показатель степени при независимой переменной от 1 до 3. Законы типа Вина или Стефана-Больцмана встречаются крайне редко. Из теории планирования эксперимента известно, что Ф ТС описываются уравнениями линейного и квадратичного типа. [c.68]

    Современная наука начисто отвергает ложную концепцию о тепловой смер-ти> мира. Накопленный человечеством опыт убедительно доказывает, что мир бес-конечен и развитие его происходило вечно и вечно будет продолжаться. Основа ошибки Клаузиуса заключается в том, что второе начало термодинамики в отличие от первого начала ие является абсолютным законом природы, а имеет отно- сительный характер, что было показано в работах Больцмана (1895) и Смолухов-. ского (1914). Нельзя рассматривать Вселенную как замкнутую изолированную ко-, вечную систему, а потому к ней неприменимо второе начало термодинамики. Естественно считать, что при иных условиях существования материи, сильно отличающихся от тех, которые имеют место на Земле, процессы могут протекать и в обратном направлении, т. е. с убыванием энтропии. Об этом свидетельствуют наблюдения астрономов и астрофизиков за рождением новых звезд, новых миров. [c.74]

    Сегодня принято говорить о специфичности Периодического закона, об обособленности его от других законов природы, даже возвышении над ними Такое мнение ошибочно. Б. М. Кедров впервые указал на то, что Периодический закон вливается в более широкое явление природы — повторяемость в развитии, что отождествляется с повиточностью в спирали. Д. И. Менделеев, по объективным причинам, не мог подняться до такого уровня понимания системы. Он не располагал знаниями об истинных причинах противоречивого развития ряда химических элементов. В качестве непрерывной основы у него выступал атомный вес. Однако впоследствии оказалось, что он растет в естественном [c.151]

    Как указывалось ранее, основным требованием моделируемости является тождественность математического описания модели и объекта в некоторой системе обобщенных переменных. Однако на практике нн одна модель не может обеспечить абсолютно полной тождественности математического описанпя. Следовательно, речь может идти лишь о большей или меньшей степени соответствия модели и объекта. Если при моделировании достигнуто удовлетворительное соответствие, то говорят, что модель адекватна объекту. Для того чтобы судить, насколько хорош материал, полученный на модели, необходимо установить степень адекватности модели и объекта. Иными словами, нельзя заранее, априори, утверждать, что данные, полученные на физической модели, более достоверны, чем на математической (и наоборот). Безусловно, первоначальным источником научного знания является опыт. Поэтому если математическая модель построена на основе строгих предпосылок (например, базируется на фундаментальных законах природы илп на ранее апробированных результатах физического эксперимента) и при ее выводе не сделано никаких упрощающих допущений, влияние которых на конечный результат было бы неясно, то в этом случае математическая модель, очевидно, является вполне строгой. [c.262]

    Вывод о возможности самоорганизации материи в условиях сильной неравновесности имеет большое мировоззренческое значение, поскольку выявляет путь, по которому законы природы приводят к появлению определенного порядка в неупорядоченных системах и затем к усложнению и развитию образовавшихся упорядоченных структур. М.Эйген в 60—70-е годы показал, что в сложных сильнонеравновесных системах с особыми каталитическими свойствами их некоторых элементов возможно возникновение процесса записи информации в виде некоторого молекулярного кода, с помощью которого становится возможным самовоспроизведение этих каталитических структур. Таким образом, нелинейная неравновесная термодинамика стала в настоящее время неотъемлемым элементом физико-химического обоснования всех гипотез о путях возникновения и эволюции жизни. [c.350]


Смотреть страницы где упоминается термин Законы природы: [c.5]    [c.47]    [c.468]    [c.604]    [c.604]    [c.133]    [c.7]    [c.32]   
Очерк общей истории химии (1969) -- [ c.11 , c.56 ]




ПОИСК





Смотрите так же термины и статьи:

ЗАКОН СОХРАНЕНИЯ В ПРИРОДЕ

ОСНОВНЫЕ ЗАКОНЫ, понятия И ТЕОРИИ ХИМИИ , Предмет и метод химии Предмет химии.. Место-химии среди. других наук о природе. Метод химии

ОСНОВНЫЕ ПОНЯТИЯ, ЗАКОНЫ И ТЕОРИИ ХИМИИ Предмет и метод химии Предмет химии. Место химии среди других наук о природе. Метод химии. Логическая структура химии

Основные законы химии как объективные законы природы

Природа газовых законов

Природа макроскопического закона

Состав люминофоров и характер свечения. Возбуждение и излучение. Длительность свечения и закон затухания. Фотопроводимость вольфраматов и природа их свечения Свечение изоморфных соединений

Статистическая природа второго закона термодинамики

Строение атома. Периодический закон Д. И. Менделеева Природа химической связи и валентность элементов Строение молекул Сложность структуры атома



© 2025 chem21.info Реклама на сайте