Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Таллий степени окисления

    Для бора и алюминия характерна степень окисления +3. В большинстве соединений галлий и индий проявляют степень окисления -ЬЗ, таллий +3 и +1 для таллия степень окисления +1 более типична. Для алюминия при высокой температуре в газовой фазе известны соединения (оксиды, галогениды и др.), в которых степень окисления его +1. [c.270]


    Для таллия степень окисления -f 1 более стабильна, что связано с особенностями строения атома этого элемента. [c.278]

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]

    Для таллия степень окисления +1 представлена большим числом стабильных соединений. Они не диспропорционируют, наоборот, соединения Т1+ обычно разлагаются при небольшом нагревании, превращаясь в соединения Т1+. [c.347]

    Для таллия степень окисления +3 менее характерна. С увеличением радиуса атома участие -электронов в образовании связей уменьшается. Особенно инертна электронная пара (Т1 — б5 6р ), поэтому таллий в соединениях обычно проявляет степень окисления + 1. [c.311]

    Как и в ранее рассмотренных подгруппах р-элементов, с увеличением порядкового номера участие s -электронов в образовании связей уменьшается. Особо инертна электронная пара 6s . Поэтому если для галлия наиболее характерна степень окисления Ч-З, то для таллия +1. Индий чаще всего проявляет степень окисления -1-3. [c.462]


    Какие степени окисленности характерны для элементов подгруппы галлия В какой степени окисленности более устойчивы соединения галлия и индия и в какой — соединения таллия  [c.246]

    В атомах галлия, индия и таллия валентными электронами яв- ляются наружные, но только в возбужденном состоянии — Таким образом, обычно проявляемая этими элементами в соединениях высшая степень окисления равна -ЬЗ. Однако галлий и индий [c.334]

    Как и в ранее рассмотренных подгруппах р-элементов, с увеличением атомного номера участие 5 -электронов в образовании связей уменьшается. Особо инертна электронная пара Поэтому если для галлия наиболее характерна степень окисления +3, то для таллия + 1. Индий чаще всего проявляет степень окисления - 3. Вместе с тем для элементов Оа—1п—Т1 возрастает роль и /-орбиталей в образовании химической связи. Это сказывается на значении координационных чисел. Так, для галлия и индия типичны координационные числа шесть (зр с( -гибридизация) и четыре (зр -гибридизация), а для таллия еще, кроме того, семь (зр (1 /-гибридизация) и восемь. [c.536]

    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Какие степени окисления проявляют галлий, индий и таллий К кия степень окисления наиболее устойчива для каждого из элементов  [c.182]

    Для элементов других главных подгрупп с релятивистскими эффектами связывается следующее. Как правило элементы 6-го периода этих подгрупп имеют характерные валентности на 2 единицы меньше, чем другие, более легкие, элементы. Так, для таллия, находящегося в третьей подгруппе, характерная степень окисления равна -Ы. Также с релятивизмом связано существование соединений одновалентного висмута. Энергия сцепления атомов между собой в простом веществе (энергия когезии) этих элементов обычно также ниже, чем в других случаях. [c.86]

    Металлические свойства рассматриваемых элементов выражены слабее, чем у соответствующих элементов главных подгрупп второй и особенно первой группы, а у бора преобладают неметаллические свойства. В соединениях они проявляют степень окисления -1-3. Для последнего элемента подгруппы — таллия — наиболее устойчивы соединения, в которых его степень окисления равна -1-1. [c.395]

    Для аналогов алюмин и я - галлия и индия - степень окисление +1 более устойчива, а для таллия она характерна. Проявляется общая закономерность-в главных подгруппах периодической системы элементов при переходе сверху вниз, как правило, стабилизируются низкие степени окисления, а в побочных подфуппах - высокие. [c.352]

    Мы уже отмечали, что среди элементов подгруппы бора исключение представляет таллий. Для него характерна степень окисления -fl, причем, ТЮН является сильным основанием. Это объясняется тем, что для Т1 более прочными оказываются соединения, в которых атом сохраняет электроны на s-орбитали. Поэтому у Т1, как и у следующих за ним элементов 6 периода (см. ниже), валентным становится в первую очередь р-электрон. ]3,ля 1п и тем более для Ga это не характерно. Поэтому Ga+ — очень сильный восстановитель, а Т1 + — сильный [c.91]

    Наряду с соединениями, отвечающими степени окисления 4-3, элементы этой подгруппы, кроме бора, проявляют способность образовывать и соединения, отвечающие их степени окисления + 1, а также +2. Такие соединения алюминия неустойчивы, а галлия и индия менее устойчивы, чем соединения, отвечающие степени окисления +3. Но соединения таллия в степени окисления +1 уже более устойчивы, чем соединения, отвечающие степени окисления +3, в связи с чем последние обладают свойствами окислителей. [c.73]


    Согласно электронной конфигурации ns np , возможны две степени окисления +1 и +П1, соответствующие участию в образовании связи р- или р- и двух s-электронов. Хотя в последнее время появилось много сообщений о соединениях алюминия, галлия и индия, в которых они проявляют степень окисления +1, состояние +1И для них более характерно, а для бора это состояние — единственно возможное. Самый тяжелый элемент таллий в состоянии +П1 неустойчив и легко восстанавливается до более устойчивого состояния +1. [c.128]

    Большая устойчивость низших степеней окисления у самых тяжелых элементов наблюдается не только в группе III у таллия, ко и в группах IV и V Б у свинца и висмута. Сиджвик заметил это в 1933 г. и в качестве объяснения предположил наличие у атомов этих элементов инертной пары электронов. Гримм и Зоммерфельд считали, что большая устойчивость низшей степени окисления у этих элементов обусловлена стабилизацией вследствие заполнения Л5-уровня. Однако ионизационные потенциалы не подтверждают этой точки зрения. [c.129]

    Недавно объяснение этого явления было предложено Драго . Сравнивая термодинамические величины для хлоридов элементов групп III Б и IV , он показал, что неустойчивость хлорида таллия (III) и хлорида свинца (IV) может быть объяснена тем, что в данных группах сила ковалентной связи в соединениях элементов с высшими степенями окисления уменьшается по мере увеличения порядкового номера. Драго приписывает это уменьшению перекрывания атомных орбиталей вследствие размещения валентных электронов в большем пространстве и увеличению отталкивания между внутренними электронами в связанных атомах. [c.129]

    Другим типом обмена, который имеет особенно большое значение, является перенос электрона. Этот тип обмена можно наблюдать, когда элемент присутствует в двух различных степенях окисления, как, например, Т1(+1) и Т1( + И1). В этом случае можно добавить меченый Т1(+1) к раствору, содержащему оба окисленных состояния таллия, и, если произойдет электронный обмен, то меченые атомы распределятся между этими двумя окисленными состояниями. Скорость электронного обмена сильно изменяется в различных образцах и зависит от таких факторов, как число и состояние электронов, геометрические формы иона и т. д. [c.422]

    В устойчивых соединениях элементы этой группы проявляют степень окисления +3, находясь в состоянии /гsV -возбуждения. Исключение составляет таллий, для которого характерна также степень окисления 1. В природе они встречаются только в виде соединений, причем галлий, индий, таллий относятся к редким элементам. В свободном виде их получают электролизом из расплавов соединений. Металлы этой группы легкоплавкие, имеют серебристо-белый цвет. Галлий, индий и таллий очень мягкие, режутся ножом. Наблюдаемое нарушение закономерного изменения некоторых свойств при переходе от А1 к Оа возникает вследствие различия в строении предпоследнего электронного уровня атомов алюминия (8), галлия (18). [c.229]

    Для всех элементов этой подгруппы (за исключением таллия) характерна степень окисления +3. Для таллия наиболее устойчивой степенью окисления является - -1. Объясняется это тем, что с ростом радиуса элемента увеличивается энергетическое различие 5- и / -электронов, вследствие чего у таллия в первую очередь валентным является / -электрон, а затем уже 5. Гидроксид таллия ТЮН является сильным основанием, потому что Т1+ имеет большой радиус и малый заряд. Соли Т1 + заметно проявляют окислительные свойства, например Т1 ++2Т1=ЗТ1+. [c.78]

    Для всех элементов этой подгруппы (за исключением таллия) характерна степень окисления - -3. Для таллия наиболее устойчи- [c.103]

    Элементы 1ПА-группы. В эту группу Периодической системы входят элементы бор В, алюминий А1, галлий Са, индий 1п, таллий Т1. Они имеют одинаковую электронную конфигурацию внешнего уровня атомов пв пр ), откуда вытекает характерная степень окисления (-ЬПГ) электроотрицательность элементов невысока (от 2,01 для В до 1,44 для Т1). [c.176]

    Галлий и индий могут давать соединения, в которых они проявляют низшую степень окисления, но они менее устойчивы, чем соединения с высшим окислительным числом элемента. Таллию чаще свойственно окислительное число -Ы, чем +3. [c.170]

    В свободном СОСТОЯНИИ эти элементы представляют собой серебристо-белые мягкие металлы с низкими температурами плавления. На воздухе они довольно стойки, воду не разлагают, но легко )астворяются в кислотах, а галлий и индий — также и в щелочах. <,роме максимальной степени окисленности, равной -J-3, онн могут проявлять и меньшую. В частности, для таллия характерны соединения, где его степень окисленности раина +1. [c.639]

    У аналогов А1 — галлия и индия — степень окисления +1 становится более устойчивой, а у таллия — характерной. Проявляется общая закономерность — в главных (А) подгруппах периодической системы при переходе сверху вниз, как правило, стабилнаируются низкие степени окисления, а в побочных (В) подгруппах— высокие.  [c.338]

    Соединения галлия, индия и таллия. Эти металлы образуют два ряда соединений, в которых они проявляют степени окисления +3 и -1-1. Для галлия и индия более характерна степень окисления -1-3 соединения галлия (I) и индия (I) очень неустойчгшы, проявляют сильные восстановительные свойства. Наоборот, для таллия более характерна степень окисления 4-1 соединения таллия (111) проявляют сильные окислительные свойства. [c.336]

    Алюминий — основной представитель металлов главной подгруппы III группы периодической системы хим11ческих элементов Д. И. Менделеева. Атомный номер 13, относительная атомная масса 26,98154. У алюминия единственный устойчивый изотоп А1. Свойства аналогов алюминия — галлия, индия и таллия — Ео многом напоминают свойства алюминия. Этому причина — одинаковое строение внешнего электронного слоя элементов — s p вследствие которого все они проявляют степень окисления + 3. Другие степени окисления нехарактерны, за исключением соединений одновалентного таллия, по свойствам близким к соединениям элементов I группы. В связи с этим будут рассмотрены свойства только одного элемента — алюминия и его соединеннй. [c.150]

    Сравните AG298 реакций взаимодействия Tl O и TI2O3 с водой в расчете на I моль HjO (ж). Как изменяются кислотно-основные свойства оксидов и гидроксидов с повышением степени окисления таллия  [c.100]

    Оа, 1п и Т1 расположены в ряду напряжений до водорода. Галлий и индий растворяются в разбавленных кислотах, таллий в соляной кислоте пассивируется за счет образования нерастворимого в воде Т1С1. В соответствии с устойчивой степенью окисления Т1 при взаимодействии с кислотами образует производные Т1 (I). [c.537]

    Снль "-1е окислители окисляют таллий до степени окисления +3  [c.592]

    Третья группа. Для элементов подгруппы бора (за исключением таллия) характерна степень окисления +3. Последней соответствуют соединения Э(ОН)з. Происходит дальнейшее ослабление (от I группы к И, от И к П1) основных свойств. Если LiOH—основание, а Ве(0Н)2 — амфотерное соединение, то В(ОН)з —кислота. Таким.образом, при переходе к третьей группе мы впервые встречаемся с элементом, образуюш,им кислоту (этим бор отличается и от всех элементов И1 группы), и с иэополикислотами, которые также характерны для бора. В соответствии с увеличением радиусов ионов элементов ВН ряду А1(0Н)з —Т1(ОН)д происходит усиление основных свойств. Если 6а(ОН)з отличается практически одинаковой степенью диссоциации с отщеплением ионов 0Н и Н+, то у 1п(0Н)з несколько преобладают основные свойства, а у Т1(0Н)з амфотерные свойства выражены очень слабо. Обращает на себя внимание очень медленное усиление основных свойств в этом ряду соединений. Это объясняется тем, что если атомы элементов третьей главной подгруппы являются электронными аналогами (их внешний электронный слой имеет строение s p), то ионы В + и А1 + сильно отличаются от Ga +, и ТР+. Первые имеют наружные оболочки атомов благородных газов, а вторые — 18-электронные оболочки, содержащие 10 d-электронов. Вследствие этого увеличение радиусов ионов после алюминия становится менее значительным, что и приводит к медленному усилению основного характера соединений. Здесь, так же как и в предыдущей группе, наблюдается диагональное сходство амфотерные гидроксиды А и Ве близки по свойствам. [c.91]

    Элементы бор, алюминий, галлий, индий и таллий составляют IIIA группу периодической системы Д. И. Менделеева. На внешнем энергетическом уровне атомов этих элементов находится по 2s- и 1 р-электрону, что выражается формулой s p . В нормальном состоянии атомы этих элементов содержат только по одному непарному р-электрону, но так как при очень незначительной затрате энергии один из s-электронов возбуждается и переходит на энергетический подуровень р, то энергетическое состояние возбужденных атомов можно выразить формулой s p . В этом состоянии все три электрона наружного энергетического уровня являются непарными. Поэтому все эдементы И1А группы образуют соединения, в которых их степени окисления равны -fl и +3. Однако соединения элементов с окислительным числом +1 устойчивы только у таллия, а у всех остальных элементов группы И1А неустойчивы. [c.198]

    Насыщенный раствор этого соединения окрашен в коричневЕ>ш цвет и со,,,ржит очень малое количество катионов таллия(1П). Укажите состав катиона и аниона в соединении TII3. Пользуясь справочными данными, определите степени окисления галлия в диамагнитных соединениях Ga I и СаВгг- Как они диссоциируют в расплаве  [c.79]

    Элементы бор В, алюминий Л), галлий Оа, индий 1п и таллий Т1 входят в состав П1А групты Периодической системы Д. 11 Менделеева. Строение валентного электронного уровня у атомов этих элементов одинаково — пз пр. Отсюда вытекает характерная для этих элементов степень окисления ( + 111) электроотрицательность элементов невысока. По химическим свойствам бор—неметалл алюминий, галлий и индий — амфотерные элементы, причем при переходе от Л1 к 1п основные свойства усиливаются, таллий проявляет металлические свойства для него более устойчиво состояние Т , чем Т1 ".  [c.199]


Смотреть страницы где упоминается термин Таллий степени окисления: [c.338]    [c.338]    [c.630]    [c.334]    [c.99]    [c.403]    [c.274]    [c.356]    [c.97]    [c.104]    [c.27]    [c.177]   
Справочник по общей и неорганической химии (1997) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Окисления степень

Таллий



© 2025 chem21.info Реклама на сайте