Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналогия групповая

    VI группы являются неполными электронными аналогами. В то же время аналогия в электронном строении между типическими элементами и подгруппой селена более близкая. Они являются, как отмечено выше, не только групповыми, но и типовыми аналогами. Характер электронной аналогии в VI группе можно проиллюстрировать следующей схемой  [c.229]

    I и астат А1 составляют УПА-группу Периодической системы, Групповое название этих элементов-гд гогены. Электронная конфигурация валентного уровня атомов галогенов одинакова пз пр . Электроотрицательность элементов уменьшается от фтора к астату. Фтор-самый электроотрицательный элемент (/ = 4,10), он не имеет положительных степеней окисления и встречается в соединениях только в состоянии Р , Остальные галогены - хлор и его более тяжелые аналоги проявляют в соединениях степени окисления от ( — 1) до (-ЬУП), [c.114]


    Помимо отмеченных выше видов аналогии (групповая, типовая, слоевая, контракционная и горизонтальная) в периодической системе существует определенное сходство элементов, расположенных по диагонали,— так называемая диагональная аналогия. Наиболее известна аналогия в диагональных парах Ве—А1, В—Si. Диаго- [c.21]

    Разложение Вигнера—Кирквуда также использовали для того, чтобы показать, что квантовомеханические аналоги групповых интегралов Майера (разд. 2.4) не имеют успеха, как в классическом случае [60]. Несостоятельность проявляется впервые при члене порядка /г . [c.58]

    Горизонтальная и диагональная аналогии. Своеобразным следствием внутренней периодичности является так называемая горизонтальная аналогия, смысл которой заключается в том, что в ряде случаев соседи в горизонтальных рядах обладают заметным химическим сходством. Наиболее известна горизонтальная аналогия в триадах УПШ-группы (Ге — Со — N1 Ей — КЬ — Рс1 Оз — 1г — Р1). Однако не следует думать, что это исключение. Еще Д.И.Менделеев, предсказывая свойства неизвестных элементов, ориентировался не только на вертикальную (групповую) аналогию, но и на сходство по горизонтали, находя, например, атомную массу как среднее арифметическое из атомных масс соседей сверху, снизу, слева и справа. Причиной горизонтальной аналогии можно считать некоторое отличие первой и второй пятерок -элементов, первой и второй семерок / элементов, обусловленное тем, что у перых 5 или 7 элементов заполнение оболочек происходит в соответствии с правилом Гунда, а у последних правило Гунда не выполняется. [c.236]

    Возвращаясь к основным уравнениям (1.505), представим как обыкновенные координаты в многомерном пространстве, а сами уравнения (1.505)—как определяющие семейства кривых (траекторий). По аналогии со статистической физикой назовем это пространство фазовым пространством частицы, g —фазовыми координатами, а уравнения (1.505) — уравнениями движения фазовых координат. Подмножество координат х и назовем внешними и внутренними фазовыми координатами. Теперь точка, зафиксированная в фазовом пространстве, представляет в общем случае мгновенное состояние частицы. Через каждую такую точку мы можем (решив (1.505)) провести траекторию, которая показывает, как это состояние меняется во времени. Если взять все частицы в технологической системе и зафиксировать их состояние в некоторый момент, то определится группа точек в фазовом пространстве. Представим группу частиц достаточно большой, такой, что можно считать их состояние в любой момент времени как континуум, заполняющий часть фазового пространства и текущий со скоростью поля, определяемой функциями Wi. Введем плотность этого потока, протекающего через фазовое пространство, как групповую плотность/( , t) частиц в фазовом пространстве, так что [c.132]


    Первая группа Периодической системы характеризуется тем, что в ней размещаются элементы с резко отличными свойствами. С одной стороны, это литий и натрий, а также исключительно химически активные собственно щелочные металлы, а с другой — медь и такие благородные металлы, как серебро и золото. Все они объединяются групповой аналогией. Как и в других группах, между типическими элементами, а также элементами подгрупп калия и меди соответственно наблюдается типовая аналогия. Кроме того, металлы подгруппы калия являются слоевыми аналогами. Несколько отличается химия лития как первого типического и кайносимметричного элемента 1А-группы. Кроме того, имеет место диагональная аналогия между литием и магнием. Диагональными аналогами в узком [c.303]

    Периодический закон определяет химико-аналитические свойства элементов и ионов и позволяет предвидеть возможность проведения групповых и общих реакций для элементов-аналогов, с одной стороны, и частных реакций для выделения и обнаружения элемента или иона, с другой стороны. Он объясняет сходство и различие в химических свойствах веществ. [c.32]

    Изложение фактического материала химии элементов осуществляется по единому методическому принципу, в основу которого положены групповая принадлежность элементов и различные виды электронной аналогии в соответствии с градацией степени общ]Ю-сти. Как правило, рассмотрение идет в такой последовательности общая характеристика группы, первый типический элемент группы, второй типический элемент группы, остальные элементы главной подгруппы (тип-аналоги), элементы побочной подгруппы. [c.3]

    Однозначное описание свойств элемента предполагает, что каждый элемент должен находиться в периодической системе на строго определенном постоянном месте. Это называется инвариантностью (неизменностью) положения. Известно, что положение элемента в системе Д. И. Менделеева определяется не только его порядковым номером, но также номером периода (строки) и группы (столбца), в которых он находится. Однако даже в наиболее распространенной современной форме периодической системы принцип инвариантности положения элемента не всегда соблюдается. В качестве примера можно привести неопределенное положение в ней водорода. Очевидно, необходим общий критерий, позволяющий однозначно определять положение элемента. Сам Д. И. Менделеев в качестве такого критерия выбрал химические свойства элементов, которые он считал более фундаментальной характеристикой, чем значения атомных масс, несмотря на то, что именно последние были положены им в основу классификации элементов. Поэтому он допускал перестановки элементов (Аг—К, Те—I и т. д.), с тем чтобы привести в соответствие положение элемента в периодической системе с его химическими свойствами, отражаемыми групповой аналогией. В дальнейшем разными исследователями были предложены различные варианты системы (в настоящее время их известно более четырехсот), в основу которых взяты разные, нередко частные критерии. [c.6]

    Характеристика элементов подгруппы кальция. Элементы подгруппы кальция (щелочно-земельные металлы) характеризуются наибольшим сходством между собой, поскольку для них имеет место ие только групповая и типовая аналогия, но и слоевая. При наличии в атоме заполненной лз -орбитали, пр- и п—1) г-оболочки вакантны. ОЭО обсуждаемых элементов практически одинакова, равно как и значение стандартных электродных потенциалов. В целом от Са к Ва незначительно возрастает химическая активность элементов. Во многих отношениях щелочно-земельные элементы напоминают щелочные. Те и другие образуют солеобразные гидриды, их гидроксиды представляют собой сильные основания, они являются плохими комплексообразователями и т. д. [c.131]

    Групповая и типовая аналогии. Периодический закон является фундаментальным законом природы, отражающим единство количественной (заряд ядра, число электронов, атомная масса) и качественной (распределение электронов, совокупность свойств) характеристик элементов. [c.227]

    Типовая аналогия (аналогия между элементами в подгруппах), несомненно, характеризует более глубокое сходство между элементами по сравнению с групповой, что находит свое отражение в закономерностях изменения свойств как самих элементов, так и их соединений. Тем не менее и этот вид аналогии не полностью охватывает все особенности физико-химической природы отдельных элементов и их взаимосвязь с соседями по группе. [c.228]

    Отметим, что диагональная аналогия в широком смысле возможна только для элементов начала малых периодов и не наблюдается как при переходе к более тяжелым групповым аналогам, так и при дальнейшем продвижении вправо. Например, изменение характеристик диагональной пары С — Р уже одного порядка с вертикальными парами С — 81, N — Р и горизонтальными парами С — К, [c.238]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]


    Металлохимия лития. По металлохимическим свойствам литий также отличен от других элементов 1А-группы. Объясняется это аномально малой плотностью, резким увеличением температуры плавления в направлении от натрия к литию, а также размерными факторами. Так, литий при сплавлении со своими групповыми аналогами (1А-группа) дает расслоение. В противоположность другим металлам 1А-группы литий не образует металлидов с металлами подгруппы меди. Литий с алюминием образует интерметаллические соединения, тогда как остальные металлы Ь -группы не смешиваются с алюминием в расплавленном состоянии. В то же время все металлы 1А-группы, включая литий, хорошо образуют амальгамы. Кроме того, однотипный характер имеет взаимодействие металлов 1 А-группы с Ga, In, Pb и Sn. [c.306]

    Помимо отмеченных выше видов аналогии (групповая, типовая, слоевая, контракционная и горизонтальная) в Периодической системе существует определенное сходство элементов, расположенных по диагонали, — так называемая диагональная аналогия. Наиболее известна аналогия в диагональных парах — Mg, Ве — А1, В — 81. Диагональная аналогия может проявляться в двух формах сходстве общего химического характера элементов, проявляющемся во всех однотипных соединениях (диагональная аналогия в широком смысле), и в возможности изоморфного замещения диагональных аналогов в сложных соединениях (диагональная аналогия в узком смысле). Последний тип аналогии широко известен в геохимии. Диагональная аналогия в широком смысле обусловлена близостью энергетических (Д7, АЕ, ДОЭО) и размерных (ДОЭО/Дг) характеристик элементов-аналогов. В свою очередь, это определяется немонотонным изменением, например, электроотрицательности и орбитальных радиуЛв элементов по горизонтали (в периоде) и по вертикали (в группе). Причинами немонотонного изменения энергетических и силовых характеристик элементов, как обсуждалось выше, являются эффекты кайносимметрии, экранирования, проникновения внешних [c.237]

    Второй вопрос. К чему приводит такая эстафеты диффузия По-видимому (по аналогии ) групповое пе ремещен е атомов быстрее, чем перемещение отдельно атома па то же расстояние коэффициент диффузии во растает. За счет чего Что меняется Оо или энергия ак тиваци, и как меняются обе эти величины  [c.176]

    Сложную задачу представляет определение теплот превращений групповых компонентов. Сравнительно нетрудно определить для этих компонентов теплоты сгорания. Может создаться впечатление, что расчет теплот превращений нефтяных фракций по разности теплот сгорания исходной и конечной смеси не вызывает затруднений. Однако нужно учитывать, что ошибка определения теплоты сгорания нефтяной фракции подчас больше, чем теплота ее превращения в нефтехимическом процессе. Поэтому определение теплот превращения групповых компонентов приходй гся основывать на аналогиях с превращениями индивидуальных [c.77]

    Распространенной ошибкой, которая привела к появленик> некоторых уже прочно укоренившихся названий, является построение названий для новых групп соединений по аналогии с существующими, например таких, как силиконы (Р2310)д и сульфоны КгЗОг, которые хотя и имеют очень мало сходства с кетонами КгСО (как по строению, так и по свойствам), но получили свои групповые названия по аналогии с последним и широко-употребляются на практике. Очень трудно установить правила, которые позволили бы избежать введения таких неправильных названий. Выбор всегда зависит от глубокого знакомства с практикой использования названий в прошлом, но при этом-основным критерием выбора остается требование, чтобы название было по возможности однозначным. [c.19]

    По сравнению с менделеевским в современном 8-групповом варианте короткой формы таблицы (см. форзац в начале книги) имеются некоторые изменения. Так, водород помещается над галогенами (это его основное место). Инертные газы в связи с их выявленными химическими свойствами размещаются в VIII группе в качестве главной ее подгруппы. А 3 триады —железо, кобальт, никель и их аналоги — составляют побочные подгруппы [c.79]

    В дальнейшем, по мере углубления теоретических представлений о свойствах атомов (эффекты проникновения и экранирования, р-, й-, /-контракция учение о кайносимметричных и некайносим-метричных орбиталях и др.), появилась возможность обосновать наряду с групповой, типовой и другими вертикальными аналогиями вторичную, внутреннюю и горизонтальную аналогии. Кроме того, были объяснены специфические особенности химии первых типических элементов, а также первого ряда элементов вставной декады . Таким образом, по мере углубления представлений о строении вещества открываются новые возможности в понимании периодического закона, который находится в постоянном развитии. Поражает интуиция Д. И. Менделеева, который в Основах химии писал Периодический закон не только ждет новых приложений, но и усовершенствований, подробной разработки и свежих сил... По-видимому, периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещается . [c.7]

    Групповая аналогия далеко не отражает всех особенностей элементов, входящих в данную группу, поскольку формируется она по наиболее общему признаку — числу валентных электронов — без учета типа валентных орбиталей. Эта аналогия пропадает для элементов в низших степенях окисления и тем более в свободном состоянии. Однако в пределах каждой группы можно выделить элементы, которые обладают более глубоким сходством между собой, Это сходство проявляется не только в высшей, но и во всех промежуточных степенях окисления, и обусловлено не только одинаковым числом валентных электронов, но и одинаковым типом орбиталей, на которых эти электроны расположены. По этому признаку и выделяются подгруппы элементов в пределах одной rpyinibi. Элементы, принадлежащие к одной подгруппе, обладают более близким сходством в свойствах, в основе которого лежит одинаковый тин валентных орбиталей, заполняющихся электронами. Эта более глубокая аналогия называется типовой аналогией. Таким образом, элементы, принадлежащие одной подгруппе, являются тип-аналогами, Так, в рассмотренном выше примере П1 группы бор, алюминий и подгруппа галлия, образующие главную под-грушту (или ПГА.-группу), являются тип-аналогами, поскольку для всех этих элементов характерен одинаковый тип валентных электронных орбиталей (ns np ). Элементы подгруппы скандия, образующие побочную подгруппу П1 группы (или И1В-группу), также являются между собой тип-апалогами [валентная электронная конфигурация ns (n—l)(i l. [c.9]

    Первая группа системы характеризуется тем, что в пей рг13 1еща-ются элементы с резко отличными свойствами. С одной стороны, это литий II натрий, а также исключительно химически активные собственно щелочные металлы, а с другой — медь и такие благород])ые элементы, как серебро и золото. Все оии объединяются групповой аналогией. Как и в других группах, между типическими элементами, а также элементами подгрупп калия и меди соответственно наблюдается типовая аналогия. Кроме того, металлы подгруппы калия являются слоевыми аналогами. Несколько отличается химия лития вследствие диагональной аналогии между литием и магнием. Диагональными аналогами в узком смысле являются натрий и кальций. С металлохимической точки зрения между элементами 1А- и 1В-групп также имеется существенное различие. Для металлов 1А-груипы вовсе не характерно образование широких областей твердых растворов с металлами других групп, а элементы подгруппы меди, наоборот, дают непрерывные илп ограниченные твердые растворы с широкими областями гомогенности. В то же время и те и другие металлы ие образуют фаз внедрения. [c.111]

    В дальнейшем, по мере углубления теоретических представлений о свойствах атомов (эффекты проникновения и экранирования, р-, -, /-контракция, учение о кайносимметричных и некайносимметричных орбиталях и др.), появилась возможность обосновать наряду с групповой, типовой и другими вертикальными аналогиями вторичную, внутреннюю и горизонтальную аналогии. Кроме того, были объяснены специфические особенности химии первых типических элементов, а также первого ряда элементов вставных декад. Таким образом, по мере углубления представлений о строении вещества открываются новые возможности в понимании Периодического закона, который находится в постоянном развитии. [c.227]

    Подобным же образом можно представить характер электронной анилогии во всех группах Периодической системы . Отметим некоторые особенности характс -ра электронной аналогии, вытекаюгцие из приведенной схемы. -Элементы (1Л-и ПА-группы) являются полными электронными аналогами и в то же время проявляют групповую и типовую аналогию. Это обусловлено аналогичным строением электронных орбиталей у всех представителей одной группы. Заполненные [c.230]

    Совместное влияние кайносимметрии 3 -оболочки и лантаноидной контракции для -элементов 6-го периода (НГ — Hg) приводит к существованию более тонкого вида химической аналогии, чем рассмотренные ранее групповая, типовая и слоевая. Этот вид аналогии целесообразно назвать контракг ионной аналогией. Сущность его состоит в том, что пары Ъх — НГ, КЬ — Та, Мо — и т.д, обладают особенно близкими свойствами, а их более легкие аналоги — Т1, V, Сг и др, — отличаются от них. Эта закономерность хорошо иллюстрируется значениями металлических атомных радиусов, которые очень близки для элементов 5- и 6-го периодов. Именно контракционной аналогией объясняется тот факт, что элементы 21 — НГ, МЬ — Та часто называют элементами-близнецами, [c.233]

    Все разнообразие биологически активных молекул и их аналогов, которые могут быть использованы в качестве лигандов, не поддается перечислению. Тем не менее имеет смысл назвать некоторые (иногда очень широкие, а иногда ограниченные) группы веществ и даже индивидуальные вещества, чаще других используемые в качестве лигандов. Всем им свойственна определенная биоспецифичность — индивидуальная или групповая. Под первой будем понимать строгую взаимную специфичность ( сродство ) двух молекул, например антигена и антитела под второй — такой вид биоспецифического взаимодействия, когда лиганд может связывать целую группу родственных в этом смысле веществ. Примером может служить никотинаденин-нуклеотид, взаимодействующий со всеми ферментами, для которых он является коферментом. [c.361]

Рис. 2.20. Делокали-зованные гибридные орбитали моле1д лы метана Как отмечалось выше, гшоский метан нестабилен потому, что групповая орбнталь ц/4 не участвует в связывании. Если бы эта орбиталь стшьно возмущалась, то ее нижний возмущенный уровень мог бы уйти ниже уровня орбитали Рг, и тогда в связывании четырех атомов углерода участвовало бы уже на 6, а 8 электронов. Эго возможно в аналогах метана АН4, в которых центральный атом А имеет доступные (т.е. отиосительно низко лежащие) (3-орбитали, та как симметрия <3 -орбиталей (два угловых узла) как раз подходит к симметрии орбитали ц/4 Рис. 2.20. Делокали-зованные <a href="/info/68163">гибридные орбитали</a> моле1д лы метана Как отмечалось выше, гшоский метан нестабилен потому, что групповая <a href="/info/18311">орбнталь</a> ц/4 не участвует в связывании. Если бы эта орбиталь стшьно возмущалась, то ее нижний <a href="/info/25831">возмущенный</a> уровень мог бы уйти ниже уровня орбитали Рг, и тогда в связывании четырех атомов углерода участвовало бы уже на 6, а 8 электронов. Эго возможно в аналогах метана АН4, в которых <a href="/info/189596">центральный атом</a> А имеет доступные (т.е. отиосительно низко лежащие) (3-орбитали, та как симметрия <3 -<a href="/info/1196">орбиталей</a> (два угловых узла) как раз подходит к симметрии орбитали ц/4

Смотреть страницы где упоминается термин Аналогия групповая: [c.126]    [c.214]    [c.9]    [c.12]    [c.12]    [c.17]    [c.22]    [c.23]    [c.71]    [c.428]    [c.238]    [c.274]   
Неорганическая химия (1989) -- [ c.9 , c.12 , c.111 ]

Общая и неорганическая химия 1997 (1997) -- [ c.227 ]

Общая и неорганическая химия (2004) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

КАО групповые



© 2025 chem21.info Реклама на сайте