Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скандия подгруппа

    VI групп, примыкающие к диагонали бор — астат,— типичные полупроводники (т. е. их электрическая проводимость с повышением температуры увеличивается, а не уменьшается). Характерная черта этих элементов — образование амфотерных гидроксидов (с. 151). Наиболее многочисленны d-металлы. В периодической таблице химических элементов Д. И. Менделеева они расположены между S- и р-элементами и получили название переходных металлов. У атомов d-элементов происходит достройка d-орбиталей. Каждое семейство состоит из десяти d-элементов. Известны четыре d-семейства 3d, 4d, 5d, и 6d. Кроме скандия и цинка, все переходные металлы могут иметь несколько степеней окисления. Максимально возможная степень окисления d-металлов +8 (у осмия, например, OsOj). С ростом порядкового номера максимальная степень окисления возрастает от III группы до первого элемента VIII группы, а затем убывает. Эти элементы — типичные металлы. Химия изоэлектронных соединений d-элементов весьма похожа. Элементы разных периодов с аналогичной электронной структурой d-слоев образуют побочные подгруппы периодической системы (например, медь — серебро — золото, цинк — кадмий — ртуть и т. п.). Самая характерная особенность d-элементов — исключительная способность к комплексообра-зованию. Этим они резко отличаются от непереходных элементов. Химию комплексных соединений часто называют химией переходных металлов. [c.141]


    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]

    Элементы побочной подгруппы III группы скандий 8с, иттрий У, и лантан Ьа относятся к редким и рассеянным металлам. До недавнего времени они не находили широкого применения. По электронному строению они относятся к переходным металлам, поскольку содержат на внешней оболочке один ( -электрон, однако по свойствам напоминают скорее щелочноземельные металлы. Все они сильно электроположительны и практически всегда проявляют одну степень окисления +3. Щелочные свойства гидроксидов этих металлов усиливаются от скандия к лантану (гидроксид лантана — сильное основание). [c.153]

    Т1) монотонно увеличиваются атомные и ионные радиусы (см. рис. 17). Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду в—Т1. Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энта ьпий образования соединений элементов подгрупп скандия и галлия к типических элементов треть- Рис. 221. Сумма трех первых энер-ей группы (рис. 221). Как видно 1ИЙ ионизации атомов и энтальпии из рнс. 221, во всем ряду В- -Ас образования оксидов Э Оз элемен- [c.525]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]


    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    В виде простых веществ элементы подгруппы скандия — белые металлы. Некоторые их константы приведены ниже  [c.546]

    На основании строения электронных оболочек атомов элементов подгруппы скандия объясните, почему они имеют устойчивую валентность — И1, всегда электроположительны и носят основной характер. [c.165]

    Сопоставление электронных структур атомов и ионов скандия, галлия и алюминия показывает, что по строению внешних электронных слоев невозбужденных атомов элементы подгруппы скандия не имеют ничего общего с алюминием, тогда как электронная структура трехзарядных ионов этих элементов одинакова  [c.545]

    Кроме того, в ряду В—А1—S —Y—La—A (в противоположность ряду В—А1—Ga—In—TI) закономерно увеличиваются атомные и ионные радиусы. Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться более закономерно, чем в ряду В—Т1. Сказанное подтверждается, например, при сопоставлении теплот образования оксидов элементов подгруппы скандия, подгруппы галлия и типических элементов третьей группы [c.511]

    Простые вещества и соединения элементов подгруппы скандия широкого применения пока не находят. [c.527]

    Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энтальпий образования соединений элементов подгрупп скандия и галлия и типических элементов третьей группы (рис. 238). Как видно из рис. 238, во всем ряду В—Ас (р- и -элементов) монотонно уменьшаются энергии ионизации (/1+ [c.545]

    Электроны заполняют 4/-, а не 5(/-подуровень потому, что в этом случае атом обладает меньшей энергией. Однако разница в энергиях 4/- и 5с(-состояний очень мала. Благодаря этому один из 4/-электронов (а в некоторых случаях, например, у церия, два 4/-электрона) легко возбуждается, переходя на 5й-подуровень, и становится, таким образом, валентным электроном. Поэтому в большинстве своих соединений лантаноиды имеют степень окисления -1-3, а не +2. Это обстоятельство объясняет близость свойст лантаноидов к свойствам элементов подгруппы скандия. [c.500]

    В энергиях 4[- и 5 -состояний очень мала. Благодаря этому одии из 4/-электронов (а в некоторых случаях, например, у церия, два 4/-электрона) легко возбуждается, переходя иа 5 -подуровень, и сгановится, таким образом, валентным электроном. Поэтому в большинстве своих соединений лантаноиды имеют степень окисленности +3, а не +2. Это обстоятельство объясняет близость свойств лантаноидов к свойствам элементов подгруппы скандия. [c.642]

    Скандий и его аналоги, каждый в своем периоде, являются пер-ными -элементами, т. е. у них первых начинают заполняться d-(фбиталн преднаружного слоя. Наличие лишь одного электрона в ( -состоянии обусловливает малую устойчивость й Ч -конфигурации и отражается на всех свойствах элементов подгруппы скандия. В частности, н отличие от других -элементов скандий и его аналоги проявляют постоянную степень окисления +3. Напротив, координационные числа у них непостоянны. При переходе от скандия к иттрию и лантану устойчивые координационные числа повышаются. Так, если для S (1И) типично координационное число 6, то для Y ti La оно достигает 8 и 9. [c.524]

    Отмеченным закономерностям не подчиняются элементы подгруппы скандия. Для этой подгруппы типичны закономерности, характерные для соседних подгрупп -элементов. [c.40]

    По химической активности цинк и его аналоги уступают щелочноземельным металлам. При этом в противоположность подгруппе кальция в подгруппе цинка с ростом атомной массы химическая активность металлов (как и в других подгруппах -элементов, кроме подгруппы скандия) понижается. Об этом, в частности, свидетельствуют AG/ дихлоридов и характер изменения их значений в зависимости от порядкового номера элементов (рис. 247). Об этом же свидетельствуют значения электродных потенциалов металлов цинк и кадмий в ряду напряжений расположены до водорода, ртуть — после. Цинк—химически активный металл, легко растворяется в кислотах и при нагревании в щелочах  [c.632]

    Элементы подгруппы скандия [c.669]

    Соединения элементов подгруппы скандия [c.526]

    Подгруппа П1Б (скандий, иттрий, лантан, актиний) 496 [c.4]

    В подгруппу скандия входят скандий (5с), и актиний (Ас). К подгруппе скандия, кроме семейств церия и тория. Основные константы (а также бора и алюминия) приведены ниже  [c.544]

    Подгруппа скандгля. В побочную подгруппу (или 1ПБ подгруппу) третьей группы входят элементы скандий, иттрий, лантан и актиний. Их атомы содержат по два электрона на внешней электронной оболочке и по 9 электронов в следующей за ней занятой оболочке. Строение этих двух электронных оболочек можно выразить формулой п - 1)з р й тгз . Каждый из этих элементов открывает собой соответствующую декаду -элементов. Некоторые их свойства приведены в табл. 21.4. Степень окисления элементов подгруппы скандия в большинстве их соединений равна -ЬЗ. [c.499]


    В земной коре элементы подгруппы скандия очень распылены и от ,ельных минералов не образуют. Из-за этого их трудно выделить в чилом (без примесей) состоянии. [c.525]

    ГЛАВА 4 ЭЛЕМЕНТЫ ПОДГРУППЫ СКАНДИЯ [c.544]

    Скандий и его аналоги, каждый в своем периоде, являются первыми -элементами, т. е. у них первых начинают заполняться /-орбитали преднаружного слоя. Наличие лишь одного электрона в /-состоянии обусловливает малую устойчивость -конфигурации и отражается на всех свойствах элементов подгруппы скандия. В частности, в отличие от ранее рассмотренных -элементов скандий и его аналоги проявляют постоянную степень окисления +3. Напротив, координационные числа у них непостоянны. [c.544]

    В свободном состоянии элементы подгруппы скандия представляют собой серебристо-белые металлы с высокими температурами плавления. Металлические свойства выражены у них резче, чем у элементов главной подгруппы. Они [c.499]

    Оксиды элементов этой подгруппы представляют собой тугоплавкие белые вещества. Гидроксиды проявляют основные свойства, усиливающиеся в ряду Зс — V — Ьа. Так, соли скандия гидролизуются в значительной степени, а соли лантана практически не подвергаются гидролизу Ьа(ОН)з — сильное основание. [c.500]

    К третьей группе относятся типические элементы (бор, алюминий), элементы подгруппы галлия (галлий, индий, таллнй) и подгруппы скандия (скандий, иттрий, лантан, актиний) к этой группе часто относят элементы семейств церия (лантаноиды) и тория (актиноиды). [c.508]

    Элементы (как и -элементы) относят к переходным элементам. Они расположены в 5-м (4/-элементы) и 6-м (5/-элементы) периодах периодической системы. 4/-Элементы объединяют в семейство ланта-ноиодов, а 5/-элементы — в семейство актиноидов. /-Элементы обычно помещают в III группу — в подгруппу скандия. [c.639]

    Элементарные вещества по их отногнению к титану разделяют на четыре группы Г) галогены и халькогены, образующие с титаном соединения ковалентного или ионного характера, нерастворимые или ограниченно растворимые в титане 2) водород, бериллий, эле 1ентарные вещества подгрупп бора, углерода, азота и большинство металлов В-подгрупп, образующие с титаном соединения интерметаллидного характера и ограниченные твердые растворы 3) налоги и ближайшие соседи титана по 1ер Юдической системе, образующие с титаном непрерывные ряды твердых растворов 4) благородные газы, щелочные, ще.лоч го-земельные и редкоземельные (кроме скандия) металлы, не образующие с титаном ни соединении, ни твердых растворов. [c.262]

    НЫХ лоев невозбужденных атомов элементы подгруппы скандия не имеюг ничего общего с алюминием, тогда как электронная структура трехзарядных ионов этих элементов одинакова  [c.525]

    Для 5-элементов наиболее типичны простые вещества, имеющие кристаллы со структурой объемноцентрированного куба. Элел енты подгрупп скандия, титана, марганца, цинка и аналоги железа существуют в виде металлов с гексагональной решеткой простые вещества элементов подгрупп ванадия и хрома — в виде кристаллов с кубической объемноцентрированной решеткой, а простые вещества элементов подгрупп кобальта, никеля и меди — в виде металлов с решеткой гра-нецентрированного куба. Большинство 4/-элементов (лантаноидов) чаще всего образуют металлы с гексагональной структурой. [c.256]

    Области применения скандия ограничены из-за ( го дороговизны. В силу своей высокой теплостойкости, легкости, высокой прочности и химической стойкости скандий является перспективным конструкционным материалом для авиа-и ракетостроения. Металлический скандий используется в электровакуумной технике как хороший геттер (нераспыляющийся поглотитель газов). Металлы подгруппы скандия используются в качестве добавок к отдельным сплавам. [c.500]


Смотреть страницы где упоминается термин Скандия подгруппа: [c.523]    [c.525]    [c.640]    [c.640]    [c.496]    [c.260]    [c.260]    [c.261]    [c.298]    [c.334]    [c.144]    [c.201]   
Введение в современную теорию растворов (1976) -- [ c.182 , c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие с водородом элементов подгруппы скандия лантаноидов и актиноидов

Краткий обзор фторидов элементов подгруппы скандия, ланта(ноидов и актиноидов

Кремнеорганические производные элементов подгруппы скандия

Металлы подгруппы скандия

Побочная подгруппа III группы периодической системы (подгруппа скандия)

Подгруппа ШБ (скандий, иттрий, лантан, актиний)

Подгруппа бериллия (щелочноземельные металлы) (Be, Mg, Са, Sr, Ва, Ra) . 73. Подгруппа скандия. Лантаноиды и актиноиды

Подгруппа галлия и скандия. Лантаниды и актиниды

Подгруппа скандия . 21.2.2. Лантаноиды . 21.2.3. Актиноиды Четвертая побочная подгруппа

Подгруппа скандия. Лантаноиды и актиноиды

Получение и свойства элементов подгруппы скандия

Применение лантаноидов и элементов подгруппы скандия

Свойства металлов подгруппы скандия

Скандий

Скандий, иттрий, лантаноиды и актинонды (побочная подгруппа III группы)

Соединения элементов подгруппы скандия

Техническое применение металлов подгруппы скандия

Фториды элементов подгрупп титана (Ti, Zr, Hf) и скандия

Элементы главных подгрупп периодической системы и подгрупп скандия и титана Элементы главной подгруппы 1 группы периодической системы литий, натрий, калий, рубидий, цезий

Элементы главных подгрупп периодической. системы и подгруппы скандия, лантанидов, титана Элементы главной подгруппы I группы периодической системы литий, натрий, калий, рубидий, цезий

Элементы побочной подгруппы (подгруппы скандия)

Элементы побочной подгруппы III группы периодической системы скандий, иттрий, лантан, редкие земли

Элементы побочной подгруппы — подгруппа скандия и лантаноиды

Элементы побочных подгрупп групп IV — титан, цирконий, гафний V — ванадий, ниобий, тантал VI — хром, молибден, вольфрам VII — марганец, технеций, рений III — скандий

Элементы подгруппы скандия

Элементы подгруппы скандия (S, Y, лантаноиды, актиноиды)

Элементы подгруппы скандия Общая характеристика элементов подгруппы скандия

Элементы подгруппы скандия в природе. Получение и применение

Элементы подгруппы скандия и редкоземельные элементы



© 2024 chem21.info Реклама на сайте