Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация ионов в четвертичных аммониевых солях

    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]


    Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными диэлектрической проницаемостью, которая характеризует свойства растворителя, и расстоянием наибольшего сближения ионов а. Величина а для одного и того же электролита в различных растворителях изменяется не сильно, и можно ожидать, что степень ассоциации ионов в ионные двойники или тройники в растворителях с одной и той же диэлектрической проницаемостью будет одинакова. Однако наблюдается очень резкое различие между степенями диссоциации (ассоциации) электролитов в растворителях, имеющих одинаковые диэлектрические проницаемости. Это говорит о том, что при ассоциации ионов в ионные двойники, тройники и более сложные образования играет большую роль химическая природа реагирующих ионов и растворителей, и, следовательно, ионные двойники образуются не только за счет чисто кулоновского взаимодействия. Об этом говорят и сами авторы теории, особенно Фуосс. Эти авторы исследовали ассоциацию ионов полностью и не полностью замещенных аммониевых оснований и пришли к выводу, что ионы солей не полностью замещенных аммониевых оснований ассоциируют лучше, чем ионы четвертичных аммониевых оснований. Они объясняют это обстоятельство возникновением водородных связей между реагирующими ионами . Кулоновское взаимодействие дополняется некулоновским, и свойства такого ассоциата из ионов мало отличаются от свойств обычной молекулы. [c.156]

    Хотя константы диссоциации четвертичных аммониевых соединений в дихлорметане и хлороформе имеют порядок 10 —10 их влиянием в часто используемых разбавленных растворах нельзя пренебрегать. Желательно, чтобы в органической фазе происходила ассоциация ионных пар, так как этот процесс способствует экстракции. Поэтому более концентрированные растворы обладают преимуществом. Если анион вводится в систему частично в виде неорганической соли NaX, то высокая концентрация и избыток ЫаХ в водной фазе увеличивают экстракцию [Q+X ] в органическую фазу. В то же время возможная ассоциация ионов неорганической соли в водной фазе в больщинстве случаев не оказывает неблагоприятного действия на процесс в целом. [c.22]

    Первые результаты получены в применении ЯМР к исследованию ассоциации ионов. Баксон и Смит [263] наблюдали спектр ЯМР четвертичных аммониевых солей, растворенных в нитробензоле, используя в качестве внутреннего эталона тетраметилсилан. Ими получены различные концентрационные зависимости для химического сдвига ряда солей с одинаковым катионом Ви4М" и разными анионами С1-, Вг , 1 , IO и Р1с (рис. IV. 10). Полученные данные позволили рассчитать константы диссоциации ионных пар, которые оказались для всех солей почти вдвое больше, чем рассчитанные из данных электропроводности. Авторы относят это за счет неопределенностей, связанных с изменением коэффициентов активности растворенных частиц с концентрацией. Они, однако, считают, что метод ЯМР позволяет выделить ассоциацию только близко расположенных катиона и аниона, что невозможно сделать при интерпретации данных электропроводности. [c.112]


    АССОЦИАЦИЯ ИОНОВ В ЧЕТВЕРТИЧНЫХ АММОНИЕВЫХ СОЛЯХ [c.284]

    Значительная часть сведений об ассоциации ионов была получена при изучении электропроводности четвертичных аммониевых солей в различных растворителях, (см. превосходный обзор [6]). Пионерами и ведущими исследователями в этой области были Краус и Фуосс. [c.284]

    ГИИ. Ионные триплеты играют важную роль в электропроводности четвертичных аммониевых солей и других электролитов, когда диэлектрическая проницаемость растворителя меньше 12. Ассоциация двух ионных пар с образованием димера соли также сопровождается уменьшением электростатической энергии, и дальнейшее уменьшение энергии происходит при присоединении к димеру других ионов или иных ионных пар в конце концов этот процесс приводит к кристаллу соли. Степень ассоциации можно определить криоскопически как отношение среднего молекулярного веса к молекулярному весу мономерной соли. В бензоле (е = 2,3) степень ассоциации для объемистых четвертичных аммониевых иодидов, перхлоратов и тиоцианатов составляет от 2,4 до 3,2 при концентрации соли 0,001 М (в расчете на мономер) в 1000 г растворителя [11]. Для тиоцианата тетра-н-бутиламмония степень ассоциации постепенно увеличивается с концентрацией соли, достигая 32 при формальной концентрации 0,3 М, и далее уменьшается, вероятно, потому, что в этой точке объемная концентрация соли равна примерно 0,1. В таких растворах частицы растворенного вещества больше напоминают фрагменты кристалла, а не свободные ионы или ионные пары, а среда весьма сходна с умеренно разбавленным солевым расплавом. [c.286]

    С близкими диэлектрическими проницаемостями, но различной природы, на ассоциацию ионов, а также различие в константах ассоциации ряда солей четвертичных аммониевых оснований в растворителях с близкими диэлектрическими проницаемостями (дихлорэтан, хлористый этилиден и о-дихлорбензол). [c.304]

    Теоретически влияние растворителей в этом случае может быть оценено по уравнениям, выведенным для характеристики влияния растворителей на константы ассоциации солей [уравнения (VII,17) и (VII,21)1, так как и в этом случае в растворе нет свободных молекул и продуктов присоединения, а присутствуют только ионные ассоциаты. Можно ожидать, что по порядку величин константы ассоциации кислот будут близки к константам ассоциации солей. В действительности константы кислот несколько ниже, чем солей с неорганическими катионами или солей четвертичных аммониевых оснований, но близки к константам солей moho-, [c.342]

    В свое время образование непроводящих частиц в растворах сильных электролитов Семенченко, Бьеррум, Фуосс и Краус объясняли возникновением ионных ассоциатов за счет кулоновского взаимодействия. При этом предполагалось, что между ассоциированными ионами могут быть различные расстояния и что они не отделены от свободных ионов потенциальными барьерами. Поэтому строгая применимость закона действия масс ко многим сильным электролитам и возможность ассоциации в растворителях с любыми (в том числе и высокими) диэлектрическими проницаемостями не может быть следствием только кулоновского взаимодействия ионов. Кулоновское взаимодействие не может объяснить индивидуальное влияние растворителей с близкими диэлектрическими проницаемостями, но различной природы, на ассоциацию ионов, а также различие в константах ассоциации ряда солей четвертичных аммониевых оснований в растворителях с близкими диэлектрическими проницаемостями (дихлорэтан, хлористый этилиден и о-дихлорбензол). [c.349]

    Так, из измерений электропроводности Уинн-Джонс [28] нашел, что константы ассоциации в нитробензоле равны от 5 10 до 7 10 для перхлоратов пиперидиния и ди-пропиламмония, 6-10 для пикратов пиперидиния и ди-пропиламмония, 5-10 для пикрата дифенилгуанидиния, но для пикрата тетраэтиламмония константа ассоциации столь мала, что измерить ее не удается. Электропроводность пикрата пиперидиния не изменяется при небольших добавках пиперидина или пикриновой кислоты и, следовательно, не связана с равновесием переноса протона от пикриновой кислоты к пиперидину. Наблюдаемые закономерности объясняются образованием водородной связи между кислым атомом водорода замещенных аммониевых ионов и кислородными атомами аниона. Это взаимодействие сильнее в более кислом ионе дифенилгуанидиния, слабее в менее кислых ионах пиперидиния и дипропиламмония. Более основной пикрат-ион легче образует водородные связи, чем менее основной перхлорат-ион. Четвертичный аммониевый ион не образует водородных связей, так как не содержит кислых атомов водорода. Электропроводность вторичных аммониевых солей заметно увеличивается при добавлении небольших коли- [c.265]


    К этому классу экстрагентов относятся первичные RHjN, вторичные RjHN и третичные R3N амины и четвертичные аммониевые основания R4NOH. Они взаимодействуют с кислотами по реакции нейтрализации, давая стехиометрические соли. Важно отметить, что в результате такой реакции ион гидроксония почти полностью дегидратируется. Экстракция солей металлов аминами (точнее, солями аминов) может рассматриваться как анионный обмен и как реакция присоединения. При этом необходимо учитывать ассоциацию солей аминов в органической фазе. [c.413]

    Теория водных растворов электролитов позволяет с тем или иным приближением оценить отношение Уа/Ув. Учет неидеальности органического раствора в общем случае весьма сложен. В жидком ионите возможны процессы ассоциации (образование димеров, тримеров) и неполная диссоциация солей (образование ионных пар). В общем случае ассоциацию нельзя описать простой формой закона действия масс. Однако иногда (например, в растворах солей четвертичных аммониевых оснований или других аминов) константы ассоциации не зависят от концентрации. Такой раствор носит название идеальноассоциированного. В растворах указанных солей в полярных растворителях вплоть до концентрации 0,01 соль находится в мономерной форме. [c.27]


Смотреть страницы где упоминается термин Ассоциация ионов в четвертичных аммониевых солях: [c.128]    [c.257]    [c.109]    [c.121]    [c.259]    [c.589]    [c.646]    [c.388]    [c.98]    [c.127]    [c.111]   
Смотреть главы в:

Основы физической органической химии Изд.2 -> Ассоциация ионов в четвертичных аммониевых солях

Основы физической органической химии Скорости, равновесия и механизмы реакций -> Ассоциация ионов в четвертичных аммониевых солях




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация ионов

Четвертичные аммониевые соли



© 2025 chem21.info Реклама на сайте