Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генная иммунизация

    По мере развития иммунологии оказалось, что для иммунизации часто нужен не целый вирус или болезнетворный микроб, а лишь его антигенная часть, способная вызвать образование антител. Такая часть является белком - субъединицей вируса или бактерии, содержащие ее вакцины называют субъединичными. Генная инженерия открыла простой путь получения таких вакцин. Из генома вируса выделяют ген белка с антигенной активностью, встраивают его в вектор и размножают этот белок в бактериальной клетке. Производство такого белка в отличие от получения вируса не только дешево, но и безопасно, сама вакцина также безопасна и не содержит ничего лишнего. [c.62]


    Предпринимаются попытки ввести зародышам мышей гены иммуноглобулинов человека с целью создания трансгенных мышей, которые в ответ на иммунизацию конкретным антигеном смогут вырабатывать иммуноглобулины человека. Чтобы получить от трансгенных животных клетки, секретирующие специфические моно- [c.215]

    ДНК-иммунизация позволяет не только избежать очистки белковых антигенов, но и индуцировать иммунный ответ, направленный именно на кодируемый плазмидой белок, а не на саму плазмиду. Поэтому один и тот же вектор можно использовать для доставки разных белков или для многократного введения одного и того же гена. [c.233]

    Векторные ВКО-вакцины позволяют провести иммунизацию сразу от нескольких заболеваний. Для этого можно использовать рекомбинантный ВКО, который несет несколько генов, кодирующих разные антигены. [c.241]

    Чтобы получить растения, устойчивые к вирусам, проводили их иммунизацию вирусными генами, кодирующими белки оболочки, другими вирусными генами или антисмысловыми последовательностями вирусного генома. [c.396]

    Защита растений от патогенных вирусов может осуществляться не только их иммунизацией генами вирусных белков, но и при участии противовирусных белков, синтезируемых сами- [c.399]

    Для выведения линий животных, устойчивых к возбудителям инфекций, можно использовать другой подход, заключающийся в создании путем трансгеноза наследуемых иммунологических механизмов. С этой точки зрения рассматривают самые разные гены, ответственные за работу иммунной системы гены основного комплекса гистосовместимости, Т-клеточных рецепторов, лимфокинов. Наиболее обнадеживающими на настоящее время являются предварительные результаты, полученные при введении мышам, кроликам и свиньям генов, кодирующих Н- и L-цепи какого-либо моноклонального антитела. Идея этого подхода заключается в том, чтобы снабдить трансгенное животное наследуемым механизмом защиты, позволяющим обойтись без иммунизации с помощью прививок. [c.434]

    Генная инженерия позволяет, в принципе, получать абсолютно безвредную вакцину. Нужно заставить бактерию вырабатывать один (или несколько) из белков оболочки вируса, и этот белок использовать для вакцинации. В этом случае вакцина вообще не содержит инфекционного начала (ДНК или РНК) и поэтому не может возбудить болезнь, хотя должна пробудить иммунитет. Такая вакцина принципиально нового типа была получена и испытана. Опыты проводились с одним из белков оболочки вируса ящура. Испытания дали неплохие результаты, хотя оказалось, что иммунизация такой вакциной приблизительно в 1000 раз менее эффективна, чем в случае убитого вируса. [c.125]


    Как уже говорилось (разд. 3.5.5), локусы главного комплекса гистосовместимости (МНС) расположены в хромосоме 6 человека и гомологичны генам комплекса Н2 мыши [113]. Иммунизация инбредных линий мышей разными, явно неродственными антигенами (синтетическими полипептидами, сывороточными белками, антигенами клеточных поверхностей) индуцирует высокие уровни антител в одних линиях и низкие уровни (или отсутствие ответа) в других. Количество индуцированных антител контролируется локусами иммунного ответа (1г), которые являются частью комплекса Н2. Заражение мышей вирусом лейкемии вызывает рак, более легкий в одних линиях, чем в других [766]. Эти различия контролируются генами, которые, подобно генам 1г, относятся к комплексу Н2 [741 740 765 783]. Позже было продемонстрировано сцепление комплекса Н2 с генетическими факторами предрасположения к аутоиммунному тиреоидиту мышей [859] и восприимчивости к лимфоцитарному вирусу хориоменингита. [c.267]

    Еще один перспективный подход к производству вакцинных препаратов получил название иммунизация генами . Опыты проведены на мышах. Часть ДНК, ответственная за синтез гемагглютинина вируса гриппа — достаточно сильного иммуногена, вводится в плазмиду, которая в свою очередь инъецируется в мышечную ткань. Подобная процедура обеспечивает син гез соответствующего вирусного белка — протективного антигена, сенсибилизирующего организм. Введение провоцирующей дозы вируса гриппа экспериментальным животным полностью предотвращает размножение нативного вируса. Важность подобных исследований кажется очевидной. [c.341]

    Несомненно важнейшим свойством как исходных антител, так и их рекомбинантных производных является их специфичность, что должно проявляться в отсутствии перекрестных иммунологических реакций с макромолекулами, обладающими общими свойствами с антигенами-мишенями. С помощью обсуждавшихся методик получения антител, в конечном счете опирающихся на иммунизацию экспериментальных животных, очень трудно быстро и эффективно решить эту задачу. Как и во многих других случаях на помощь пришли методы генной и белковой инженерии, которые обеспечили значительный прогресс в данном направлении исследований. [c.422]

    В пре-В-клетках периодически инициируются попытки рекомбинации D- и J-сегментов, а затем V-сегмента для получения функционального V-D-J-гена тяжелой цепи, который транскрибируется вместе с Ср- и Сб-генами и транслируется в ц- и 5-цепи мембраносвязанных Ig. В свою очередь ц-цепи индуцируют рекомбинации в локусах легких цепей. Клетка пытается создать функциональные цепи, используя локусы то материнской, то отцовской хромосомы, пока не достигнет успеха или не кончатся неперестроенные наборы генных сегментов. Невозможность синтеза функционального иммуноглобулина приводит к устранению данного клона В-клеток. Зрелые В-клетки экспрессируют мембраносвязанные IgM и IgD. После первичной антигенной стимуляции эти клетки способны синтезировать секретируемый IgM после иммунизации Т-за-висимым антигеном В-клетки могут с помощью Т-клеток переключаться на синтез IgG, IgA или IgE. На этой стадии часто возникают соматические мутации V-re-нов. [c.145]

    Перспективы генной иммунизации были тщательно изучены. В одной из серий экспериментов мышам в квадрицепсы обеих задних конечностей вводили раствор с Е. со//-плазмидой, несущей кДНК нуклеопротеина вируса гриппа [c.233]

    Генная иммунизация (Geneti immunization) Индукция у организма иммунного ответа без введения антигена, путем включения в клетки гена, кодирующего белок-антиген. [c.546]

    А, транскрипция которой находилась под контролем промотора вируса саркомы Рауса или ци-томегаловируса. Хотя уровень экспрессии гена нуклеопротеина был настолько низок, что не поддавался регистрации, через 2 нед после иммунизации в крови мышей обнаруживались антитела к нему. Выживаемость иммунизированных мышей оказалась значительно выше, чем мышей из контрольной группы (рис. 11.5). Более того, они были нечувствительны и к другому штамму вируса гриппа. Такая перекрестная защита не вырабатывается при введении традиционных противогриппозных вакцин, полученных на основе поверхностных антигенов вируса, и поэтому каждая вакцина специфична лишь к одному штамму вируса. Более того, традиционные вакцины сохраняют свою эффективность только до тех пор, пока остаются неизмененными поверхностные антигены. К сожалению, для генов поверхностных антигенов характерна высокая частота мутаций, что приводит к появлению существенно различающихся штаммов вируса. Кбровые же белки, такие как нуклепротеин, относительно стабильны и активируют иммунную систему по другому механизму, чем поверхностные антигены. [c.233]

    Введение в организм реципиента генов антител, которые связываются со специфическими антигенами, было названо иммунизацией in vivo. Для этого гены Н- и L-цепей иммуноглобулинов моноклонального мыши- [c.434]

    Сходные эксперименты с различными инбредными линиями мышей (т.е. линиями, в которых все мыши генетически однотипны) дали результаты, близкие к полученным ранее на морских свинках при иммунизации простым синтетическим полимером некоторые жнии давали сильный иммунный ответ Т-клеточного типа, тогда как другие линии совсем не реагировали. На специально выведенных линиях мышей, различавшихся только ограниченным участками генома (так называемых конгенных линиях), были проведены исследования по картированию геиов 1г, и оказалось, что эти гены расположены в пределах генного комплекса Н-2 в области между Н-2К и Н-20, впоследствии названной 1-областью. Сейчас у мышей описан уже ряд различных генов 1г, контролирующих зависимые от Т-клеток ответы на разные антигенные детерминанты, и определена их локализация в нескольких субобластях 1-области (рис. 17-64). В большинстве таких локусов способность отвечать на антигенную детерминанту определяется доминантным аллелем, однако в отдельных случаях доминирует неспособность к ответу. В этих случаях можно показать, что наследственная неспособность к иммунному ответу обусловлена активностью Т-клеток-супрессоров, и гены, контролирующие ответ этих клеток на специфическую детерминанту, называют ие /г-генами, а генами иммунной супрессии (1з). [c.60]


    Согласно Вюрмсеру и Филитти-Вюрмсер, эти данные указывают на то, что изоагглютинины в организме человека продуцируются не посредством иммунизации, как в общем случае образования антител, а непосредственно под контролем генов групп крови. Эта точка зрения, если она правильна, должна была бы помочь тонко различать естественные агглютинины от агглютининов, вырабатывающихся у иммунизированных животных, или хотя бы от агглютининов, продуцируемых введением А- и В-ве-ществ групп крови людям. [c.182]

    Первые опыты в этом направлении были проведены с ин-бредными морскими свинками линий 2 и 13, которые отличаются друг от друга только по генам, контролирующим антигены II класса МНС (рис. 7.4). Т-клетки морских свинок, предварительно сенсибилизированных одним из антигенов (овальбумином, туберкулином и др.), вносили в культуру макрофагов, которые презентиру-ют антиген, использованный для иммунизации. Во всех случаях, когда макрофаги и Т-клетки были генетически идентичными (снн-генными), регистрировался сильный пролиферативный ответ Т-клеток, распознавших антиген на поверхности сингенных макрофагов. В то же время Т-клетки, отличающиеся от макрофагов по антигенам II класса, не в состоянии развить пролиферативный ответ в несингенной системе клеточного взаимодействия. Эти первые опыты позволили предположить, что примированные Т-клетки распознают не только антиген, использованный для иммунизи-ции, но и собственные антигены гистосовместимости. Однако уз- [c.164]

    Мышей с определенной характеристикой по локусу К или D иммунизировали одним из вирусов (условно вирусом А). От примированных животных получали Т-клетки, которые использовали в цитотоксическом тесте с клетками-мишенями, зараженными вирусом и относящимися по характеру локуса К (или D) либо к донору Т-клеток, либо к его аллельному варианту. Цитотоксическую реакцию оценивали по интенсивности выделения Сг из клеток-мишеней. Примированные Т-киллеры гаплотипа не дают реакции с генетически идентичными, интактными клетками-мишенями (1). Нет реакции и при заражении клеток-мишеней вирусом, отличающимся от вируса использованного при иммунизации (2). Цитотоксическая реакция положительная, если генетически идентичные Т-кил-лерам клетки-мишени заражают гомологичным вирусом (3). В то же время при использовании клеток-мишеней, отличающихся по локусу К от Т-киллеров, цитотоксическая реакция не развивается даже при наличии гомологичного вируса у клеток-мишеней (К" против К или К против К — 4,5). Аналогичные отношения выяапены для локуса D. В то же время генетические ограничения не проявляются по генам, контролирующим молекулы П класса. Из этих опытов следует, что Т-киллеры распознают как собственные молекулы I класса, так и чужеродный вирусный антиген [c.171]

    Как каждый из 1г-генов, 1г-ген, контролирующий ответ на разветвленный полипептид, является аутосомным доминантным геном, аллели которого контролируют ответ на детерминанты, образованные Туг—Glu, His—Glu и Phe—Glu. Наибольшие генетически контролируемые различия наблюдаются при вторичном ответе на сравниваемые разветвленные полипептиды. Эти различия полностью исчезают при использовании для иммунизации комплекса полипептида с белком — метилированным бычьим сывороточным альбумином. Следовательно, генетически детерминированные различия иммунного ответа определяются природой носителя детерминантной группы. Как показано в разделе 2.4, структуру носителя распознают Т-хелперы. Из этих и других экспериментов со всей очевидностью вытекает, что 1г-гены контролируют ответ на тимусзавигимые антигены и что этот контроль осуществляется на уровне Т-клеток, регулирующих иммунный отпет (см. также гл. 10). [c.53]

    Здесь уместо упомянуть, что антитела и сами могут высту пать в качестве антигенов как в гетерологичной системе, т. е прн введении их в организм животного другого вида, так и в го нелогичной — например, при инъекции мышам инбредных линий При гетерологичной иммунизации в качестве антигена (иммуно гена) доминирует Рс-участок молекулы антитела. При гомологич ной иммунизации антитела вырабатываются к Р.ь-фрагментам Показано, что антигенными детерминантами в этом случае слу жат гипервариабильные области Ун и Уь или прилегающие к ним участки цепей. Даже для близкородственного организма они мо- [c.102]

    Хотя гибридомные технологии еще продолжают достаточно активно использоваться, с появлением новых эффективных методов белковой инженерии, в том числе систем отбора белков на основе разнообразных дисплеев и репрезентативных клонотек случайных белковых последовательностей, mAb начинают постепенно сдавать свои позиции. Новые технологии позволяют отбирать антитела требуемой специфичности непосредственно из суспензии фаговых частиц без иммунизации лабораторных животных и при этом получать белки с совершенно новой специфичностью к антигенам, которые неиммуногенны in vivo. Новые подходы дают возможность снять ограничения, накладываемые на производство антител особенностями иммунного ответа живого организма. В последние годы удалось получить большое количество рекомбинантных антител с новыми свойствами значительно уменьшить размер их молекул, а также объединить антитела в поливалентные гибридные комплексы, сильно повысив при этом их авидность. Генно-инженерными методами удалось объединить фрагменты антител с разнообразными аминокислотными последовательностями для обеспечения адресной доставки макромолекул. Такие гибридные молекулы, кроме антител, включают ферменты для активации предшественников цитоток-сичных лекарственных препаратов, токсины, белки вирусных частиц, используемые в генотерапии, и сами могут быть включены в липосомы для повышения эффективности химиотерапии. Рекомбинантные антитела применяют для получения биосенсоров, используемых при мониторинге исследуемых молекул в реаль- [c.409]

    В частности, проблема была решена созданием трансгенных мышей (XenoMouse), экспрессирующих после иммунизации только гены иммуноглобулинов человека [216,217]. Для этого на первом этапе были получены трансгенные мыши, у которых с помощью технологии генного нокаута были удалены обеспечивающие рекомбинацию участки локусов тяжелых цепей и легких к-цепей иммуноглобулинов. Поскольку рекомбинация является абсолютно необходимым этапом сборки генов иммуноглобулинов в эмбриогенезе и во время иммунного ответа, нокаутирован- [c.410]

    Больщое экономическое и социальное значение имеют разработки вакцин. Современные биотехнологические разработки предусматривают создание рекомбинатных вакцин, вакцин-антигенов, основанных на генноинженерном подоходе в ДНК известной основак-цины встраивают чужеродные гены, кодирующие иммуногенные белки возбудителей вирусов гриппа, герпеса, гепатита В и получают вакцину против соответствующей инфекции. В последние годы стало возможным создание поливалентной вакцины на основе объединения участков ДНК различных патогенов. Открывается возможность одномоментной комплексной иммунизации против многих опасных инфекций. [c.182]

    Первичная иммунизация вызывает образование антител преимущественно изотипа IgM повторное введение антигена стимулирует образование антител в основном изотипа IgG. Механизм переключения изотипа схематично представлен справа. 2. При первичном ответе рекомбинированный участок V-D-J считывается вместе с Сц-геном. После удаления интронов при процессинге первичного РНК-транскрипта обра- [c.142]


Смотреть страницы где упоминается термин Генная иммунизация: [c.233]    [c.233]    [c.234]    [c.234]    [c.243]    [c.344]    [c.346]    [c.148]    [c.249]    [c.247]    [c.167]    [c.169]    [c.38]    [c.332]    [c.131]    [c.152]    [c.383]    [c.216]    [c.217]    [c.163]    [c.309]    [c.379]   
Смотреть главы в:

Молекулярная биотехнология принципы и применение -> Генная иммунизация




ПОИСК







© 2025 chem21.info Реклама на сайте