Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетическое сцепление и картирование генов

Рис. 20.8. Картирование Х-хромосомы. В этом случае генетическая фаза двух или большего числа Х-сцеп-ленных локусов у дочери (Мать) устанавливается на основании данных о Х-сцепленных аллелях ее отца (Дед). Эту информацию в свою очередь используют для определения, какие из ее сыновей (Сыновья) получили рекомбинантную (К) и нерекомбинантную (NR) хромосому. В данном примере дед несет два рецессивных гена в локусах А и В Х-хромосомы, его дочь дигетерозиготна, а рассматриваемые аллели находятся у нее в цис-фазе. На Х-хромосоме показаны аллели локусов А и В, V-хромосома изображена в виде более короткой полоски. Рис. 20.8. Картирование Х-хромосомы. В этом случае генетическая фаза <a href="/info/1696521">двух</a> или <a href="/info/831964">большего числа</a> Х-сцеп-ленных локусов у дочери (Мать) устанавливается на основании данных о Х-сцепленных аллелях ее отца (Дед). Эту информацию в свою очередь используют для определения, какие из ее сыновей (Сыновья) получили рекомбинантную (К) и нерекомбинантную (NR) хромосому. В данном примере дед несет два <a href="/info/1279849">рецессивных гена</a> в локусах А и В Х-хромосомы, его дочь дигетерозиготна, а рассматриваемые аллели находятся у нее в цис-фазе. На Х-хромосоме показаны <a href="/info/1394748">аллели локусов</a> А и В, V-хромосома изображена в виде более короткой полоски.

    Генетическое сцепление и картирование генов [c.444]

    До недавнего времени мало было известно о локализации генов в хромосомах человека. Исключение составляли лишь признаки, сцепленные с полом (гл. 1, разд. В, 4), которые могут быть локализованы в Х-хромосомах. Ряд исследований, проведенных в последнее время, ознаменовались успехами и привели к систематическому картированию большого количества генов человека [169—171]. Наиболее важным оказался при этом метод слияния соматических клеток (дополнение 15-Д). Для слияния человеческих лимфоцитов с клетками грызунов часто используют инактивированный вирус Сендай, обладающий способностью вызывать сначала адгезию, а затем слияние клеток. Из гибридных клеток, полученных в результате слияния человеческих клеток с клетками мыши или хомяка, можно получить линии клеток, ядра в которых также сливаются. Хотя такие клетки могут размножаться, давая много поколений, тем не менее они склонны утрачивать при этом хромосомы, особенно те из них, которые ведут свое происхождение от клеток человека. Наблюдая за утратой определенных биохимических признаков, например некоторых ферментов, специфических для человека (которые могут быть отделены от ферментов хомяка методом электрофореза), можно установить наличие или отсутствие определенного гена в данной хромосоме. Очевидно, что для этого необходимо одновременно следить за потней хромосом на каждой стадии эксперимента. Новые методы окрашивания позволяют идентифицировать каждую из 26 пар хромосом человека. В настоящее время разрабатываются методы точного генетического картирования применительно к культуре клеток [171]. [c.268]

    Появившиеся в последнее время методы позволяют составлять подробные карты очень больших геномов. Есть две категории карт 1. Физические карты, основывающиеся на строении молекул ДНК, составляющих каждую хромосому. Сюда относятся рестрикционные карты и систематизированные библиотеки клонов геномной ДНК. 2. Карты генетического сцепления их строят, основываясь на частоте совместной передачи потомству двух или нескольких признаков - генетических маркеров, различных у отца и матери и приписываемых определенному участку хромосомы. В качестве маркеров издавна принято использовать те гены, экспрессия которых обнаруживается по их эффекту (таковы, в частности, гены, вызывающие генетические болезни, например мышечную дистрофию). Разработанные сравнительно недавно новые методы с применением рекомбинантной ДНК дали возможность использовать в качестве генетических маркеров короткие последовательности ДНК, содержащие один из сайтов рестрикции и различающиеся у отдельных индивидуумов, такие последовательности особенно удобны для генетического картирования, потому что под действием рестрикционной нуклеазы возникают фрагменты, различающиеся по своей длине, и этот полиморфизм длины рестрикционных фрагментов (ПДРФ) легко может быть выявлен блот-анализом по Саузерну с помощью подходящего ДНК-зонда (рис. 5-90). [c.342]


    Несмотря на то что число идентифицированных локусов быстро увеличивалось, генетическая карта человека до самого последнего времени почти сплошь состояла из белых пятен. Рассмотрим такой пример. 1000 генов, каждый из которых имеет в среднем размер 10 т.п.н. (экзоны плюс интроны), составляют лишь 10 т.п.н. из 3-10 т.п.н. гаплоидного генома человека. Эти гены могут быть разделены миллионами пар оснований, что затрудняет применение метода прогулки по хромосоме или рекомбинационного анализа, поскольку число родословных, позволяющих проводить такой анализ, мало. Что же касается диагностики, то использование этих методов ограничивается отсутствием информации о мутантных генах и дефектных генных продуктах, ответственных за многие генетические заболевания. К счастью, теперь ситуация здесь в корне изменилась благодаря появлению нового подхода, на котором мы остановимся ниже. Этот подход позволяет проследить за судьбой генов в нескольких поколениях он пригоден для целей пренатальной диагностики, анализа распределения гена в популяции, анализа сцепления и картирования. Его можно использовать и для других организмов. Например, таким способом картируют хромосомы кукурузы, что имеет большое научное значение и может найти применение в сельском хозяйстве. [c.353]

    Наши представления о геноме человека — обширная область генетики человека, включающая по меньшей мере понятия инвентаризации генов, фупп сцепления, картирования генов (локализация), секвенирования всей ДНК (генов, их мутаций и хромосом в целом), мейотических преобразований, функционирования отдельных генов и их взаимодействий, интеграции структуры и функции генома в целом. На решении всех этих вопросов была сосредоточена обширная многолетняя международная программа Геном человека (с 1990 по 2000 г.). Главным направлением работ были последовательное секвенирование участков генома и их состыковка . Успешные разработки в этой области придали программе клинико-генетический аспект (табл. 1.5). [c.18]

    Изучение групп сцепления и составление карт хромосом первоначально основывались на анализе расщепления фенотипов в потомстве формальногенетическими методами. Применение молекулярно-генетических методов значительно ускорило картирование генов, а секвенирование генома позволяет составить полные генетические карты для всех хромосом. [c.27]

    Полиморфизм ДНК и картирование. В последние годы выявляется все больше случаев полиморфизма ДНК по сайтам рестрикции (разд. 2.3.2.7, 6.1.2). Это обстоятельство раскрыло новые дополнительные возможности картирования генома человека. Установление тесного сцепления с рестрикционным маркером ДНК позволило локализовать гены многих важных наследственных болезней в конкретных хромосомных сегментах. На рис. 3.24, А представлена большая родословная с хореей Гентингтона. ДНК-маркер и, следовательно, ген хореи расположены на хромосоме 4. Модельные расчеты [584 754 887] показали, что для картирования всего генома необходимо лишь несколько сотен рестрикционных маркеров ДНК, случайным образом распределенных по геному человека. Для целей медико-генетического консультирования и пренатальной диагностики (разд. 9.1) достаточен по крайней мере один маркер, тесно сцепленный с геном данного наследственного заболевания. [c.202]

    Бурное развитие молекулярной генетики человека, начавшееся в 1980-х гг., стало возможным благодаря новаторским идеям Д. Ботштейна, Р. Уайта, М. Скол-ника и С. Дэвиса. Они обратили внимание, что полиморфизм длины рестрикционных фрагментов (ПДРФ) человека порождает полиморфные аллели (маркерные локусы), поддающиеся картированию. Как писали авторы в своей статье, мы хотим предложить новый способ построения генетической карты сцепления человека. В его основе лежит создание при помоши технологии рекомбинантных ДНК случайных однокопийных ДНК-зондов, способных выявлять полиморфные нуклеотидные последовательности при гибридизации с индивидуальными ДНК, обработанными рестриктазой . Более того, они осознали, что, используя сцепление гена того или иного заболевания с маркерным локусом, можно определить хро- [c.458]

    Генетическая карта. В результате применения описанного выше метода прерванной конъюгации, позволяющего выяснить временную последовательность переноса генов из клетки-донора, можно составить карту расположения генов в бактериальной хромосоме (рис. 15.17). Скорость их переноса в течение всего процесса остается постоянной. Моменты перехода внутрь клетки-реципиента позволяют судить о расстояниях между ними в хромосоме. При использовании этого метода не удается учитывать различия менее одной минуты. Для более тонкого картирования может служить анализ сцепления при трансдукции (переносе генов фагом). [c.460]

    Еще одним этапом развития современной генетики человека явилось картирование и локализация генов в хромосомах человека. Достижения цитогенетики, генетики соматических клеток, увеличение числа генетических маркеров способствовали успешному изучению групп сцепления. В настоящее время у человека установлено 23 группы сцепления. Эти данные нашли непосредственное применение в диагностике наследственных заболеваний и медико-генетическом консультировании. [c.8]


    Крупным успехом в изучении генетических основ аутоиммунной патологии стало проведенное недавно картирование локусов, регулирующих предрасположенность к инсулин-зависимому сахарному диабету (ИЗСД). Работа была проведена в основном на мышах линии NOD, у которых спонтанно развивается аутоиммунное заболевание, сходное с ИЗСД человека. У этих мышей картированы по меньшей мере 15 генетических локусов (Idd-1—lS), и только один из них (Idd-1) оказался сцепленным с МНС в хромосоме 17. Предполагается, что этот ген непосредственно кодирует молекулы МНС класса II. Другие гены картированы в разных хромосомах, однако их природа и роль в резистентности или предрасположенности к заболеванию пока неизвестны. [c.256]

    Генеалогический метод относится к наиболее универсальным методам в медицинской генетике. Он широко применяется при решении теоретических и прикладных проблем 1)для установления наследственного характера признака 2) при определении типа наследования и пенетрантности гена 3) при анализе сцепления генов и картировании хромосом 4) при изучении интенсивности мутационного процесса 5) при расшифровке механизмов взаимодействия генов 6) при медико-генетическом консультировании. [c.84]

    Отметим несколько важных моментов, касающихся генетического сцепления и картирования генов. Во-первых, чтобы можно было оценить частоту новых генетических комбинаций (рекомбинантов), один из родителей должен быть гетерозиготен как минимум по двум локу-сам АВ/аЬ или АЬ/аВ). Во-вторых, дигетерози-готные генотипы должны существовать в двух конфигурациях (фазах). Если два сцепленных гена на каждой из хромосом представлены одним типом аллелей (т. е. оба доминантные, АВ, или оба рецессивные, аЬ), то такую конфигурацию называют фазой сцепления (г г/с-фазой). Если же два сцепленных гена на каждой хромосоме представлены разными типами аллелей (т. е. один доминантный, а другой рецессивный, аВ или АЬ), то конфигурацию называют фазой отталкивания (/и/)анс-фазой). В-третьих, рекомбинация между двумя генами происходит независимо от их фазы. С точки зрения генетики рекомбинация между генами, находящимися в дигомозиготном состоянии (т. е. АЬ/АЬ или АВ/АВ), не приводит к появлению новой генетической комбинации, и поэтому, даже если подобная рекомбинация происходит, ее невозможно обнаружить. В-четвертых, частота рекомбинации 0% означает полное сцепление, а 50% - что гены расположены либо на разных хромосомах, либо на одной хромосоме, но удалены друг от друга слищком далеко для выявления сцепления. Для рещения проблемы картирования двух сильно удаленных генов, расположенных на одной хромосоме, необходимо картировать гены, лежащие между ними, что позволит определить, образуют ли все они одну группу сцепления. [c.446]

    Первые опыты по переносу генетического материала осуществляли с помощью слияния целых клеток [1]. Такая техника нашла применение при изучении процессов дифференци-ровки и канцерогенеза, однако наиболее успешно ее использовали при картировании генов человека [2] и получении моноклональных антител [3]. Известно, что сформировавшийся при слиянии клеток грызуна и человека межвидовой гибрид спонтанно теряет человеческие хромосомы [4]. Как правило, утрата хромосом происходит случайным образом, и это позволяет конструировать гибридные линии клеток, в которых содержатся разные хромосомы человека. Корреляция между присутствием конкретной хромосомы человека и экспрессией генетического маркера является основой для отнесения соответствующего гена к определенной группе сцепления. Из 1300 генов человека, картированных на сегодняшний день, примерно треть локализована на конкретных хромосомах с помощью методов генетики соматических клеток [5]. Процесс утраты хромосом у внутривидовых гибридов происходит не так быстро, как у гибридов межвидовых [6]. При слиянии клеток мышиной мие-ломы с клетками селезенки формируются стабильные линии гибридных клеток. Их характеризует иммортальность (способность к неограниченному делению), унаследованная от миелом- [c.8]

    Как, должно быть, уже заметил читатель, оптимальный подход к изучению сцепления зависит в некоторой степени от точного знания природы генетических трудностей, которые предстоит преодолеть (к примеру, количество различных локусов, ответственных за гетерогенное нарушение уровень фено-копийности). Однако не часто такие подробности можно с точностью заранее определить. Следует начинать изучение сцепления с выявления на основе имеющихся данных спектра возможных осложнений. Далее следует определить доступный популяционный материал (включая большие родословные, изолированные популяции, детей от близкородственных браков) и арсенал медицинских методов (включая клинические методы дифференциации фенотипов), который можно использовать для упрощения задачи. Затем, основываясь на допущениях, принятых для различных типов наследования, следует вычислить количество различных семей, необходимое для картирования признака. В конечном счете проводится подбор семей, готовятся препараты ДНК. которые анализируют по большому количеству ПДРФ. Если предположения о генетической этиологии заболевания верны, то вероятность обнаружения сцепления велика. Если же признак в действительности более сложен, чем это предполагалось, сцепление не будет обнаружено. Отрицательный ответ при поиске по всему геному докажет по крайней мере, что заболевание более сложно, чем исходно предполагалось. [c.237]

    Определение частот рекомбинации меяеду генетическими маркерами. Из-за очень высокой частоты кросинговера маркеры, удаленные друг от друга на расстояние более трех минут переноса, ведут себя как несцепленные. Данный метод обладает высокой разрешающей способностью при анализе тесно сцепленных генов и при внутригенном картировании. [c.186]

    Клонирование дрожжевых EN-областей. С помощью детального генетического картирования хромосом S. erevisiae выявлены некоторые гены, расположенные очень близко к центромерам. Например. ген МЕТЫ, необходимый для биосинтеза метионина, тесно сцеплен с центромерой хромосомы 11 ( fiVll). Такое сцепление позволило провести клонирование самой центромерной последовательности. С помощью дрожжевого синтетического плазмидного вектора была создана библиотека геномных последовательностей дрожжей, а затем выделена колония, содержащая плазмидный вектор с геном MfT 14 (рис. 9.49). По данным генетического анализа, эта плазмида, по-видимому, содержит также и функциональную центромеру, поскольку она стабильно сохраняется в дрожжевых клетках, число ее копий ограничивается одной плазмидой на клетку и она сегрегирует при митозе и мейозе как истинная мини-хромосома . Путем [c.210]


Смотреть страницы где упоминается термин Генетическое сцепление и картирование генов: [c.465]    [c.480]    [c.333]    [c.230]    [c.230]    [c.333]    [c.462]    [c.480]    [c.354]   
Смотреть главы в:

Молекулярная биотехнология принципы и применение -> Генетическое сцепление и картирование генов




ПОИСК







© 2024 chem21.info Реклама на сайте