Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фаза сцепления

    Существует две точки зрения [31], объясняющие потерю подвижности нефтей и нефтепродуктов при понижении температуры. Согласно одной, при кристаллизации твердых углеводородов формируется структурированная система, каркас которой связывает жидкую фазу. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов. При температурах, соответствующих жидкому состоянию углеводородов, ориентация длинноцепочечных молекул приводит к образованию слоев с параллельным расположением цепей, облегчающих начало кристаллизации. [c.28]


    Статистический анализ. В большинстве случаев анализ сцепления намного труднее. Обширные родословные, подобные приведенным на рис. 3.24,-не правило, а исключение. Большинство семей состоит только из родителей и детей. В этом случае проблема заключается в том, что фаза сцепления обычно неизвестна двойная гетерозигота может быть ЛВ/аЬ цис) или АЬ/аВ транс). Когда аллели распределены в популяции равномерно, оба типа ожидаются примерно с одинаковыми частотами. Индивиды АВ/аЬ будут формировать гаметы в отношении [c.195]

    Неравновесие по сцеплению. В процессе обоснования гипотезы о наследовании Rh-комплекса Фишер разработал еще одну концепцию неравновесие по сцеплению. Обычно сцепление не приводит к ассоциации признаков в популяции (разд. 3.4.1). Даже если в начальной популяции фазы сцепления распределены не случайно, то многократно повторяющийся кроссинговер будет рандомизировать комбинации аллелей в группе сцепления, и в конце концов фазы притяжения и отталкивания для двух сцепленных локусов будут встречаться в популяции с одинаковой частотой. Это случай равновесия по сцеплению. Однако если в начальной популяции существует отклонение от равновесия, то время, за которое оно будет достигнуто, зависит от степени сцепления чем теснее сцепление, тем больше требуется времени для достижения равновесия. И оно никогда не будет достигнуто, если определенные комбинации аллелей определяют сниженную приспособленность.  [c.212]

    Проблема растворимости тесно связана с зависимостью между силами сцепления и строением. Дело в том, что взаимная растворимость двух веществ обусловлена тем, что для каждого из двух чистых веществ, содержащихся в одной фазе, сцепление, осуществляемое когезионными силами, прекращается в результате взаимодействия между молекулами этих двух различных веществ. От соотношения сил взаимодействия между одинаковыми и различными молекулами зависит, насколько происходит смешение двух веществ, во всех ли соотношениях оно возможно и образуется ли при определенном соотношении концентраций граница раздела фаз. В конечном счете вопрос о растворимости относится к целому комплексу вопросов, связанных с когезионными силами в смесях. Из них было рассмотрено поведение смесей при кипении (стр. 249, 250). [c.259]

    Порозность плотной фазы псевдоожиженных газом систем, вполне определенная для данного материала и каждой скорости газа, может изменяться в диапазоне от 0,35 до 0,70 — в зависимости от химической природа, плотности, формы, гранулометрического состава и состояния поверхности твердых частиц i. При переходе от тяжелых сферических частиц к легким угловатым значения umf изменяются от 0,35 до 0,55 для последних материалов наблюдается дальнейшее увеличение порозности при возрастании скорости газа от Umf до значения, соот ветствующего образованию пузырей когда порозность Еть достигает 0,7. Это является следствием сложного воздействия на твердые частицы сил тяжести, трения газового потока, сцепления и адгезии [c.567]


    Указано, что при образовании двойного электрического слоя на поверхности частиц кварцевого песка проявляется действие положительно заряженных атомов кремния и отрицательно заряженных атомов кислорода, причем первые взаимодействуют с ОН, вторые с Н+, находящимися в жидкой фазе [211], В кислых средах (при избытке Н+) происходит отделение ОН и поверхность частиц получает положительный заряд в щелочных средах Н+ переходит в раствор и поверхность частиц заряжается отрицательно. Заряженные поверхности притягивают ионы противоположного знака, вследствие чего образуется двойной электрический слой, толщина которого составляет 10—100 нм. Наличие одноименных электрических зарядов на поверхности частиц обусловливает их взаимное отталкивание однако между частицами возникают силы сцепления, вызванные жидкостной пленкой и определяемые приближенным уравнением =Ас1/( 21), где Л — постоянная, ( — диаметр частиц. I — расстояние между ними. [c.192]

    При малых количествах диспергированной фазы насадка критических размеров обладает свойством крупной насадки, при больших же количествах этой фазы быстро увеличиваются размеры капель. Критические размеры элементов насадки зависят от физикохимических свойств системы, причем наибольшее влияние оказывают межфазное натяжение, силы сцепления и вязкость жидкостей. Для системы толуол—диэтиламин—вода в колоннах диаметром 75, 100 и 150 мм был получен [99] для колец Рашига критический размер 9,5 мм, размер ниже критического 6,35 мм. Кольца диаметром 12,35 19,0 и 25,4 мм представляли собой насадку размерами больше критического, здесь капли сохраняли свои размеры до момента захлебывания. [c.326]

    При системном анализе процессы измельчения- смешения сыпучих материалов [4] определяются как процессы взаимодействия ансамбля измельчаемых и смешиваемых частиц различного сорта и различных размеров с несущей средой и между собой при наличии внешних воздействий на двух уровнях иерархии. На локальном (микро) уровне действуют внешние поверхностные и массовые силы и силы взаимодействия между несущей фазой и частицами (силы Архимеда, Стокса, Жуковского и Магнуса). При определенных свойствах обрабатываемых веществ и несущей среды возможны дополнительные электромагнитные силы. В результате этого в системе происходит перенос массы, импульса, энергии и заряда. Внешняя механическая энергия или энергия другого вида, превращенная в нее внутри системы, расходуется на работу против сил молекулярного сцепления и электростатического взаимодействия, преодоление сил взаимодействия внутри частицы, на накопление упругих деформаций, переходящих в пластические и во внутреннюю энергию. Частично энергия упругих деформаций создает в системе дефекты, микронапряжения и микротрещины. [c.113]

    Под адгезией понимают силу сцепления между двумя приведенными в соприкосновение разнородными телами (жидкость — твердое тело). Когезией называется сила притяжения между одинаковыми молекулами или частицами [32]. Адгезия определяется работой, которую нужно затратить, чтобы разделить 2 фазы, имеющие поверхность соприкосновения, равную 1 см . [c.132]

    Устойчивость коллоидной системы определяется балансом сил, действующих между отдельными ее частицами. К таким силам относятся силы сцепления и силы отталкивания (препятствующие коагуляции). Силы сцепления имеют ту же природу, что и межмолекулярные силы. Эти силы имеют свойство быстро возрастать при сближении частиц. Силы отталкивания — это, главным образом, электростатические силы. Поскольку частицы дисперсной фазы по своей природе одинаковы, все они могут получить заряд одного и тою же знака и будут отталкиваться, что будет препятствовать их сближению на расстояние действия сил сцепления. [c.32]

    Обычно катионные эмульсии обладают более универсальными свойствами в отношении заполнителей самой разной химической природы. Это связано с физикохимическим характером взаимодействия элементов дисперсной фазы катионных эмульсий с поверхностью. Кроме того, катионоактивный эмульгатор в некоторой степени гидрофобизирует поверхность, выступая в роли адгезионной присадки, улучшающей сцепление вяжущего с поверхностью. Механизм разрушения катионных и анионных битумных эмульсий подробно рассмотрен в главе 1.2. [c.189]

    С учетом экспериментально обнаруженного влияния пяти факторов — содержания примеси, степени сшивки, легкости образования кристаллита, прочности сцепления системы наполнитель—матрица и присутствия различных фаз — на природу и интенсивность образования свободных радикалов можно сделать следующие выводы все пять факторов стремятся увеличить кажущуюся плотность сшивки и уменьшить растяжимость сегментов цеии между сшивками. Таким образом они повышают эффективность действия сил ири заданной деформации, а также [c.219]


    Адсорбция предполагает возникновение более высокой концентрации ингибитора на поверхности раздела твердой и жидкой фазы. Имеющаяся в молекуле ингибитора полярная группа обусловливает возникновение адсорбционных сил сцепления между ато.мами металла и молекулами ингибитора. [c.114]

    Так, малые дозы электролитов способствуют возникновению коагуляционных центров, по которым происходит сцепление молекул с образованием структур. Добавление в раствор значительного количества того же электролита приводит к образованию на поверхности частиц дисперсной фазы множества активных центров, приводящих к их сильной коагуляции с образованием отдельных агрегатов. Последние, достигнув достаточных размеров, оседают под воздействием сил тяжести, что в конечном итоге приводит к расслоению системы. [c.17]

    Рост числа и размеров флокул за счет сцепления частиц дисперсной фазы п систе ме приводит к образованию коагуляционных структур в виде звеньев, цепочек, друз и т.п., связывающихся в конечном итоге в сплошной коагуляционный каркас, отличаю щийся подвижностью за счет жидких прослоек при невысоких уровнях сдвиговых усилий на систему. [c.23]

    Вероятность возникновения критического зародыша а-фазы зависит от величины капиллярного давления мениска = П, с которым пленка находится в равновесии, и от площади пленки. Чем ближе расклинивающее давление П к критическому П (рис. 1) и чем меньше, следовательно, высота барьера, тем быстрее совершается переход р а и тем менее устойчива р-пленка. Толщины прорыва смачивающих пленок при различных внешних условиях и добавках электролитов и ПАВ интенсивно изучаются в связи с исследованиями процессов флотации. Прорыв р-пленок приводит к росту краевого угла и улучшает сцепление пузырька газа с флотируемой частицей. [c.288]

    Величина сил когезии зависит от природы (полярности) жидкости. При уменьшении полярности молекул растворителя и соответствующем уменьшении сил сцепления между ними понижается выигрыш энергии, который связан с переносом углеводородного радикала из объема раствора на поверхность раздела фаз, т. е. уменьшается величина ЛШ. Поэтому с переходом от воды неводным растворителям средней полярности наблюдается понижение поверхностной активности ПАВ, а также коэффициента р. Так, для форма-мида р=1,8 и АШ=1,4 кДж/моль, для нитробензола р==1,3 и Д У=0,44 кДж/моль, в связи с чем поверхностная активность одного и того же ПАВ в этих средах оказывается сильно пониженной по сравнению с водой. Из сказанного следует, что величину р можно рассматривать как одну из характеристик молекулярных свойств растворителей. [c.23]

    По П. А. Ребиндеру, стабилизующее действие гелеобразных адсорбционных слоев стабилизатора обусловливается тем, что высоковязкая прослойка между частицами не успевает выдавиться за время столкновения частиц дисперсной фазы в результате броуновского движения или в потоке. В известных условиях стабилизация дисперсных систем адсорбционно-сольватными слоями, обладающими упругостью и механической прочностью, может безгранично повышать устойчивость системы вплоть до полной фиксации ее частиц. Примером этому может служить отвердевание жидких прослоек между воздушными пузырьками пены в результате геле-образования или полимеризационных процессов. П. А. Ребиндер отмечает, что образования структурно-механического барьера достаточно для стабилизации только тогда, когда на наружной границе адсорбционного слоя поверхностная энергия мала и не резко возрастает на подступах к частице. При наличии хотя и структурированной, но не лиофильной, а лиофобной оболочки все же может происходить слипание частиц путем сцепления оболочек наружными поверхностями. Такого рода явления можно наблюдать при флотации в результате адсорбции поверхностно-активных веществ полярными группами на поверхности гидрофильных твердых частиц. Направленные в водную среду углеводородные цепи связываются друг с другом своеобразной местной коалесценцией гидрофобных оболочек. [c.284]

    На значение гидратации для устойчивости пен указывал А. А, Трапезников, а еще раньше Д. А. Талмуд, С точки зрения А, А. Трапезникова стабильность пены обусловливается гидратацией полярных групп молекул пенообразователя, что тормозит стекание жидкости в пленке пены. Сцепление концов углеводородных цепей, расположенных на межфазной поверхности со стороны газовой фазы, нужно лишь для обеспечения связности (цельности) адсорбционного слоя. При этом адсорбционный слой должен быть достаточно легкоподвижным и, следовательно, разреженным для того, чтобы разрывы, образующиеся в результате стекания жидкости в пленке, успевали своевременно залечиваться . Причиной разрушения пены А. А. Трапезников считает дегидратацию полярных групп адсорбционного слоя, наступающую вследствие непрерывного отсоса дисперсионной среды. В результате возникают сначала поверхностные, а затем и трехмерные агрегаты из молекул пенообразователя, не обладающие стабилизующим действием, и пленка в конце концов разрывается. [c.393]

    Наличие дисперсной фазы (часто в относительно малом количестве) может существенно изменить структурно-механиче-ские свойства системы по сравнению с чистой дисперсионной средой. Возможность изменения механических свойств жидкой дисперсионной среды зависит от химической природы веществ, образующих дисперсную систему, и определяется молекулярными силами сцепления между частицами дисперсной фазы и взаимодействием их с дисперсионной средой. [c.251]

    Отметим несколько важных моментов, касающихся генетического сцепления и картирования генов. Во-первых, чтобы можно было оценить частоту новых генетических комбинаций (рекомбинантов), один из родителей должен быть гетерозиготен как минимум по двум локу-сам АВ/аЬ или АЬ/аВ). Во-вторых, дигетерози-готные генотипы должны существовать в двух конфигурациях (фазах). Если два сцепленных гена на каждой из хромосом представлены одним типом аллелей (т. е. оба доминантные, АВ, или оба рецессивные, аЬ), то такую конфигурацию называют фазой сцепления (г г/с-фазой). Если же два сцепленных гена на каждой хромосоме представлены разными типами аллелей (т. е. один доминантный, а другой рецессивный, аВ или АЬ), то конфигурацию называют фазой отталкивания (/и/)анс-фазой). В-третьих, рекомбинация между двумя генами происходит независимо от их фазы. С точки зрения генетики рекомбинация между генами, находящимися в дигомозиготном состоянии (т. е. АЬ/АЬ или АВ/АВ), не приводит к появлению новой генетической комбинации, и поэтому, даже если подобная рекомбинация происходит, ее невозможно обнаружить. В-четвертых, частота рекомбинации 0% означает полное сцепление, а 50% - что гены расположены либо на разных хромосомах, либо на одной хромосоме, но удалены друг от друга слищком далеко для выявления сцепления. Для рещения проблемы картирования двух сильно удаленных генов, расположенных на одной хромосоме, необходимо картировать гены, лежащие между ними, что позволит определить, образуют ли все они одну группу сцепления. [c.446]

Рис. 3. Кривые показывают для доминантных и рецессивных заболеваний относительные вероятности (ELOD) того, что в результате мейоза для случаев с известной фазой сцепления появится больной ребенок значения приводятся Для разных вероятностей ошибочного диагноза генетически нормального сибса Рис. 3. Кривые показывают для доминантных и <a href="/info/1353532">рецессивных заболеваний</a> <a href="/info/769501">относительные вероятности</a> (ELOD) того, что в результате мейоза для случаев с известной фазой сцепления появится больной ребенок значения приводятся Для разных вероятностей ошибочного <a href="/info/1354030">диагноза генетически</a> нормального сибса
    Вь1сокомолекулярные нормальные алкань 1 в обычных условиях, начиная с гексадекана представляют собой твердые вещества кристаллической структуры с температурой плавления 16-95 °С. При низких те шерат> рах алканы в виде кристаллов сцепляются друг с другом и образуют надмолекулярную структуру под действием дисперсионных сил, возникающих при взаимном обмене электронами между молекулами. В результате действия адсорбционных сил, часть жидкой фазы среды ориентируется вокруг ассоциированных кристаллов и образует сольватные оболочки различной толщины, В ячейках между сцепленными кристаллами включается часть дисперсионной среды (масел) и образованная система приобретает структурную прочность. [c.22]

    Эти результаты прямо указывают на то, что иммобилизация воды в дисперсиях гидрофильных веществ и структурообразо-вание тесно связаны между собой. Тиксотропная коагуляционная структура, по-видимому, формируется при взаимном влиянии поверхности гидрофильных частиц на структуру полислоев воды и их свойства, а структура гидратных оболочек — на характер ориентации и силы сцепления частиц твердой фазы друг с другом. Связанная вода во многом обусловливает те свойства, которые присущи коагуляционным структурам пониженную механическую прочность, способность к замедленной упругости и т. д. [135]. Вместе с тем в результате формирования коагуляционной сетки в дисперсии заметно снижается молекулярная подвижность иммобилизованной воды [136], изменяется также кинетика ее удаления из дисперсии [137]. Уже отмечалось, что в процессе структурообразования дисперсий монтмориллонита (перехода золь — гель) наблюдается обратимое увеличение объема дисперсии. Это указывает не только на понижение плотности граничных слоев воды при структуриро- [c.44]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    Ассоциаты различного строения являются структурными элементами алкансодержащих дисперсий, топливных и масляных фракций, нефтяных остатков. Активно исследуемым коллоидным объектом нефтяного происхождения являются алкансодержащие дисперсии. Высокомолекулярные нормальные алканы в обычных условиях, начиная с гексадекана и выше, представляют собой твердые вещества. По мере понижения температуры из нефти выделяются кристаллы алкана. Благодаря действию адсорбционных сил часть жидкой фазы ориентируется вокруг надмолекулярных структур и образует сольватные оболочки различной толщины. Сцепление кристаллов приводит к возникновению пространственной гелеобразной структуры, в ячейках которой иммобилизована часть дисперсионной среды, при этом система в целом приобретает структурную прочность. Установлено стабилизирующее действие смолисто-асфальтеновых веществ на устойчивость дисперсий алканов [88]. Влияние термообработки на снижение температуры застывания нефтяных алканов объясняется уменьшением толщины сольватной оболочки их надмолекулярных структур [131]. [c.33]

    Сцепление удлиненных или пластинчатых частиц дисперсной фазы происходит по ребрам микрокристаллов, где молекулярное прашжедие наибольшее. Образовавпшися Тель обладает определенной механической прочностью [3]. А. Н. Фрумкин [4] па- [c.88]

    Адсорбция происходит иа любой поверхности в результате проявления сил сцепления, которые по своей величине значительно меньше, чем силы химические. Всякая поверхность, т. е. граница раздела двух фаз, не насыщена. Взаимно скомпенсированы лишь поля молекул, находящихся внутри твердого веншства, молекулы же на поверхности затрачивают на сцепление не всю энергию, и часть ее, остается свободной. Величина последней пропорциональна величине поверхности. В случае жидкостей поверхность стремится сократиться до минимума, поэтому мениск представляет как бы упругую пленку, напряженность которой определяется коэффициентом поверхностного натяжения у. Величина свободной энергии W поверхности 5 составляет  [c.93]

    Механическая (ранние представители 19-начала 20 вв) Основной источник взаимодейсгвия - механическое сцепление адгезива и субстрата. Адгезив заполняет поры и дефекты субстрата Игнорируется диффузия, хемосорбция и другие физико-химические явления на границе раздела фаз адгезив - субстрат . [c.6]

    Термодинами- ческая (Дюпре) Wa= 012 + Сз2 - Ом где Wj-работа адгезии, т е. работа, за раченная на преодоление сил сцепления частиц двух поверхностей для их разделения, оп и 032- поверхностное натяжение соответственно первой и второй фазы на границе с воздухом ов-поверхностное натяжение на границе раздела фаз. Для определения адгезии между жидкостью и твердым тeJюм уравнение Дюпре не может быть эффективно применено, так как не существует достаточно точного метода измерения 1Юверхностного натяжения твердого тела. [c.6]

    При достаточно высоких дисперсности и концентрациях дисперсной фазы (ДФ) в НДС с жидкой или газообразной дисперсионной средой самопроизвольно возникают термодинамически устойчивые пространственные структуры, образующиеся в результате сцепления частиц ДФ. Образование структурированных дисперсных систем (СВДС) сопровождается уменьшением избыточной межфазной энергии Гиббса и соответствующим ростом энтропии системы. Тип дисперсных структур определяется природой контактов между частицами ДФ, условно объединяемых в две группы [174,185,186]  [c.97]

    Увеличение концентрации частиц ДФ до некоторого критического значения С > С 1ф приводит к образованию дисперсных структур. Величина Скр определяется дисперсностью частиц ДФ, природой, условиями и особенностями взаимодействия фаз. При прочих равных условиях величина С1ф соответствует таким К, когда между частицами ДФ возникают силы сцепления, способные противостоять броуновскому движению и внещним энергетическим воздействиям. Для возникновения достаточно прочных контактов частицы должны быть сближены на расстояния эффективного действия сил ММВ, соответствующих конкретному типу контактов. Таким образом, переход от СДС к структурированным обязательно сопровождается потерей агрегативной устойчивости системы.  [c.101]

    В фазовых контактах сцепление частиц обусловлено близкодействующими силами и осуществляется по крайней мере 10-... 10 межатомными связями вследствие увеличения площади контакта по сравнению с атомным [174]. В зависимости от дисперсности и средней прочности отдельного контакта прочность структуры составляет 10. .. 10 Н/м и более. Образование фазовых контактов можно рассматривать как процесс частичной коалесценции [174] твердых частиц из-за увеличения площади непосредственного контакта между ними с переходом от "трчечного" соприкосновения к когезионному взаимодействию на значитеяы ой площади. Такой переход может осуществляться постепенно, например вследствие диффузионного переноса вещества в контактную зону при спекании. Чаще он происходит скачкообразно, как правило, в тех случаях, кс гда возникновение фазового контакта связано с необходимостью преодоле1 ия энергетического барьера, определяемого работой образования устойчивого в данных условиях зародыша - контакта - первичного мостика между частицами. Возникновение и развитие его могут быть результатом совместной пластической деформации частиц в местах их соприкосновения под действием механических напряжений, превышающих предел текучести материала частиц. Зародыш-контакт может образоваться и при вьщелении вещества новой фазы из ме-тастабильных растворов в контактной зоне между кристалликами - новообразованиями срастание кристалликов ведет при этом к формированию высокодисперсных поликристаллических агрегатов [174,193]. [c.106]

    Коагуляционные контакты. В коагуляционном контакте сцепление частиц ограничивается простым их соприкосновением — непосредственным или через остаточную пленку дисперсионной среды — с учетом преимущественно дальнодействующих (вандерваальсовых) сил такой контакт в принципе механически обратим. Оценим силу и энергию сцепления в таком контакте между двумя одинаковыми сферическими частицами в зависимости от геометрии системы (радиус г, зазор /г г) и физико-химических условий на границе фаз. Как было показано ранее, дисперсионная компонента свободной энергии взаимодействия (энергия притяжения на 1 см плоскопараллельных частиц 1) в среде 2 составляет по модулю [c.303]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]

    Силами отталкивания могут являться электрические силы, возникающие в результате избирательней адсорбции межфазной поверхностью одного из ионов электролита, пргГсутствующего в системе. Поскольку частицы дисперсной фазы по своей природе одинаковы и адсорбируют всегда определенный ион, все они приобретают электрический заряд одного и того же знака и испытывают взаимное отталкивание, что препятствует сближению их на такие расстояния, где уже могут действовать весьма значительные аттракционные силы. Другой причиной, препятствующей сближению коллоидных частиц до расстояний, на которых начинают превалировать силы сцепления, может явиться образование на поверхности частиц сольватной оболочки из молекул среды. Такая оболочка возникает в результате адсорб ции дисперсной фазой либо молекул среды, либо молекул или ионов третьего компонента (стабилизатора) системы. Помимо этих двух факторов существуют и другие факторы, обеспечивающие агрегативную устойчивость коллоидным системам. Подробно все факторы устойчивости рассмотрены в гл. IX. [c.20]

    В связнодщ персных системах частицы связаны друг с другом за счет межмолекулярных сил, образуя в дисперсионной среде своеобразные пространственные сетки или каркасы (структуры). Частицы, образующие структуру, очевидно, не способны к взаимному перемещению и могут совершать лишь колебательные движения. К таким системам относятся гели, концентрированные суспензии (пасты) и концентрированные эмульсии и пены, а также порошки. Гели могут образоваться как в результате коагуляции коллоидных систем и объединения в одно целое выпавшего осадка (коагели), так и вследствие молекулярного сцепления в отдельных местах частиц золя, образующих сравнительно рыхлые сетки или каркасы (лиогели). В последнем случае в гелях сохраняется внешняя однородность системы. Естественно, образованию геля всегда способствует повышение концентрации дисперсной фазы в системе. Переход золя в состояние геля называется гелеобразо-ванием. [c.28]

    У тонких порошков в результате действия сил сцепления наблюдается так называемая агрегативная флуидизация. При небольших скоростях течения в слое образуются каналы, через которые и проходит основная масса гааа. При увеличении скорости течения каналы разрушаются, в слое начинается интенсивное перемешивание и непрерывное образование и распад агрегатов, сопровождающееся уносом отдельных частиц в аэрозольную фазу. Так как с увеличением размера частиц гидродинамические силы возрастают, а действие молекулярных сил ослабевает, то следует ожидать, что при некоторой средней степени дисперсности порошка условия для флуидизации порошка будут оптимальными. И действительно, наиболее равномерная и полная флуидизация наблюдается для порошков с частицами, радиус которых близок к 20—25 мкм. [c.353]

    Если мельчайшие капельки коацерватов не обладают достаточной агрегативной устойчивостью и в то же время не способны к коалесценции (слиянию), то они могут соединяться друг с другом, образуя флокулы, которые всплывают или опускаются на дно сосуда в виде рыхлого осадка. Такая флокуляция происходит обычно, когда фаза с большим содержанием высокомолекулярного компонента обладает достаточной вязкостью. Если же вязкость фазы небольшая, то происходит обычно коалесценция отдельных мельчайших капелек и постепенное образование более крупных капелек. Обычно при длительном стоянии системы, в которой произошла коацервация, образуются два гомогенных жидких слоя, состоящих из фаз с различным содержанием высокомолекулярного вещества. Наконец, в достаточно концентрированных растворах высокомолекулярных соединений за счет сцепления макромолекул в отдельных местах могут образовываться постоянные пространственные сетки, благодаря чему раствор превращается в студень. [c.467]

    Для случая, отвечающего неравенству (XI.33), в соответствии с отрицательным значением разности объемов жидкой и твердой фаз коэффициент йр (1Т будет отрицательным, что и определит ход кривой плавления справа налево вверх от тройной точ1ки. Следовательно, с повышением давления температура плавления в этом случае будет уменьшаться. Последнее обусловлено определенной металлизацией связи и уменьшением сил сцепления при наложении давления на ковалентные кристаллы, для которых, собственно, и является характерным указанный ход кривой плавления. [c.270]


Смотреть страницы где упоминается термин Фаза сцепления: [c.445]    [c.39]    [c.42]    [c.53]    [c.56]    [c.31]    [c.79]    [c.11]    [c.99]    [c.104]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.446 ]




ПОИСК







© 2025 chem21.info Реклама на сайте