Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Использование стандартных потенциалов и уравнения Нернста

    Активность атомов в электроде из чистого металла принимается равной единице. Если же она отличается от единицы, то ее включают в Е°, который в этом случае называется формальным электродным потенциалом. Формальный электродный потенциал отличается от стандартного и тем, что при его использовании в уравнение Нернста вместо активности иона металла в растворе подставляют концентрацию. К неметаллическим электродам первого рода относится, например, селеновый электрод 8е/8е" , на котором протекает реакция [c.110]


    Металл, погруженный в электролит, называется электродом. Наибольшая принципиальная трудность, связанная с использованием уравнения Нернста, обусловлена невозможностью измерить потенциал одного единственного электрода. Например, если попытаться определить путем измерения электродный потенциал 2п/2п , т.е. разность потенциалов между металлическим цинком и раствором соли цинка, в который он погружен, необходимо металл и раствор соединить проводником с измерительным прибором. Соединить прибор с металлом нетрудно, гораздо сложнее присоединить к прибору раствор. Это соединение можно осуществить только с помощью металлического проводника, который опускается в раствор. Но как только металл проводника (например , медь) приходит в соприкосновение с раствором, на его поверхности образуется двойной электрический слой и, следовательно, появляется разность потенциалов. Итак, при помощи измерительного прибора можно определить не электродный потенциал одного электрода (металла), а разность потенциалов между двумя электродами (в данном случае разность потенциалов между цинковым и медным электродами). Поэтому при измерении электродных потенциалов металлов выбирают некоторый электрод сравнения, потенциал которогсГ словно принят за нуль. Таким электродом сравнения служит стандартный водородный электрод (рис. 3.2). Он представляет собой платиновую пластину, покрытую тонко измельченной "платиновой чернью , погруженную на платиновой проволоке в стеклянный 32 [c.32]

    Кроме перечисленных выше причин — чистоты и неустойчивости растворителя — различные значения электродного потенциала для стандартного состояния могут быть обусловлены различными способами экстраполяции. В гл. 8 был использован строго эмпирический метод экстраполяции. Хотя этот метод и пригоден для иллюстративных целей, все же в иастояш,ее время при точных определениях его не применяют даже для водных систем. Для определения стандартных электродных потенциалов сейчас используют значения коэффициентов активности, вычисленные по теории Дебая—Хюккеля, которая, как предполагают, справедлива в области низких концентраций. Полученные таким образом коэффициенты активности подставляют затем в уравнение Нернста, которое записывают в следующем виде  [c.539]

    Для растворителей с малой диэлектрической проницаемостью теория Дебая—Хюккеля не применима, поэтому были предложены два подхода к решению проблемы. Первый из них является простым расширением метода Брауна—Мак-Иннеса при использовании усовершенствованной теории Дебая—Хюккеля, развитой Грон-воллом, Ла Мером и Сэндведом. Более подходящим методом оценки стандартного электродного потенциала в растворителе с малой диэлектрической проницаемостью является, по-видимому, способ, учитывающий влияние ионной ассоциации [26] с помощью уравнения Нернста в виде [c.540]


    Другим источником ошибок при измерениях ионной активности является невыполнение уравнения Нернста при использовании того или иного ионоселективного электрода. В случае одновалентных ионов при 25°С изменение потенциала мембраны может составлять менее 59 мВ при 10-кратном изменении активности. Например, на изменение активности водородных ионов не все стекла реагируют в одинаковой степени — плавленый кварц не реагирует вообще стекло состава 2% ЫагО и 98% ЗЮг характеризуется изменением потенциала 15 мВ на единицу pH, стекло состава 30% ЫагО и 70% 5102 приводит к изменению потенциала 23 мВ на единицу pH. Лишь стекла определенного состава характеризуются изменением 59 мВ на единицу pH. Термин э. д. с.-эффективность определяется [44] как отношение наблюдаемого изменения потенциала к ожидаемому для двух растворов, содержащих данный ион. Эффективные рН-чувствительные стеклянные электроды имеют э.д.с.-эффективность, близкую к единице (0,995) в широком интервале pH. Чтобы свести к минимуму ошибку измерения, необходимо стандартизовать ионоселективный электрод с помощью стандартного раствора сравнения, активность ионов которого по возможности близка к активности ионов испытуемого раствора. Так, если рН-электрод стандартизован с помощью буферного раствора с pH = 4, а используется для измерений рас-гворов с pH =10, то ошибка составляет 0,03 единицы pH, несмотря на то, что э. д. с.-эффективность равна 0,995. В ионочувствительных стеклах э. д. с.-эффективность связана со степенью гидратации поверхности мембраны. По мере приближения к предельно обнаруживаемой конце 1трации э. д. с.-эффективность уменьшается. Ошибки, возникающие при этом, могут быть частично лпквизированы, если стандартизовать электрод с помощью двух растворов, один из которых имеет концентрацию чуть выше, а другой— чуть ниже концентрации испытуемого раствора. Таким способом можно также снизить ошибку при измерениях потенциала жидкостного соединения. [c.279]

    Предложен прямой потенциометрический анализ методом многократных добавок, контролируемый с помощью ЭВМ [63]. В процессе обычного анализа с использованием пары электродов (ионоселективного и электрода сравнения) для индикации потенциала системы в анализируемый раствор вводят ряд стандартных добавок. Объем каждой добавки автоматически оптимизируется с помощью ЭВМ (в память машины заложено оптимальное значение АЕ). По полученным значениям потенциалов в соответствии с уравнением Нернста, применяя нелинейный способ наименьщих квадратов, вычисляют результат определения, при этом удается компенсировать нестабильность электрохимической ячейки. Метод опробован на примере определения калия на фоне раствора 0,5 М сульфата магния с индикаторным электродом, обратимым к одновалентным ионам. Показано, что при анализе растворов 10 —10 М соли калия среднее квадратичное отклонение составляет 2%. [c.78]

    При потенциометрическом титровании с использованием не-поляризованных электродов измеряют равновесный потенциал электрода, находящегося в титруемом растворе. Путем подстановки потенциала электрода в уравнение Нернста можно рассчитать значения активности или концентрации потенциалопределяющего иона в любой точке кривой титрования вне зависимости от того, где находится эта точка - до или после точки эквивалентности или даже если она сама является этой точкой. При определенных условиях метод позволяет проводить титрование до теоретически рассчитанного значения потенциала электрода в точке эквивалентности или до потенциала, установленного при титровании стандартного раствора. [c.232]

    Так как в стандартном и исследуемых растворах поддерживается постоянная ионная сила и, следовательно, коэффициенты активности ионов F одинаковы, то но уравнению Нернста по э. д. с. вычисляется концентрация ионов фтора. Фторидный электрод не может быть использован в сильнокислых и сильнощелочных средах. Изменение pH в пределах 5- 9 [65] практически не влияет на потенциал электрода в диапазоне концентраций от 1 до 10 Л/ NaF. [c.88]

    Использование уравнения Нернста позволяет вычислять ЭДС гальванического элемента не только в стандартных условиях в соответствии с уравнением (12.1), но и тогда, когда активности веществ, оказывающих влияние на электродный потенциал, не равны единице. [c.210]


Смотреть страницы где упоминается термин Использование стандартных потенциалов и уравнения Нернста: [c.161]   
Смотреть главы в:

Химическое разделение и измерение теория и практика аналитической химии -> Использование стандартных потенциалов и уравнения Нернста




ПОИСК





Смотрите так же термины и статьи:

Использование уравнений

Нернст

Нернста уравнение

Потенциал использование

Потенциал стандартны



© 2025 chem21.info Реклама на сайте