Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катион-чувствительные стеклянные электроды

    КАТИОН-ЧУВСТВИТЕЛЬНЫЕ СТЕКЛЯННЫЕ ЭЛЕКТРОДЫ [c.285]

    В очень тщательном исследовании Эйзенман развил модельные представления, объясняющие катионную селективность стеклянных электродов [10, 127, 128]. Эйзенман подчеркивает роль электростатической энергии или силы поля мест внутри структуры стекла, которые обеспечивают катионный обмен с фазой раствора. Из этого рассмотрения ясно, что стекла, обладающие водородной селективностью, и стекла, селективные к щелочным катионам, могут рассматриваться как крайние члены непрерывной серии катион-чувствительных стекол. [c.286]


    Стеклянные электроды. Чувствительным элементом в них является очень тонкая стеклянная мембрана, обычно в виде пузырька. Селективность мембраны определяется составом стекла. Известны стеклянные электроды, чувствительные к ионам Н (рН-электрод) и другим катионам. В диапазоне концентраций от 10 до 10"" М чувствительность электрода к определенному иону уменьшается в ряду Ag-" > H-" > К+ > NHI > Na+ > Li +, Са +, Mg . [c.117]

    Относительная чувствительность стеклянного электрода к различным катионам описывается [55] как функция параметра К 2 уравнением [c.13]

    Для потенциометрических измерений применяют мембранные индикаторные электроды. Они обладают высокой чувствительностью и селективностью к катионам и анионам. По материалу мембраны их можно разделить на четыре группы стеклянные электроды электроды с жидкими мембранами электроды с твердыми или осадочными мембранами электроды с газочувствительными мембранами. [c.106]

    Новые рецептуры в серии литиевых алюмосиликатных стекол обеспечивают хорошо вырабатываемые электроды, обладающие специфичностью к иону натрия по сравнению с ионом калия, равную 1000 I. Сравнение данных по концентрации натрия, полученных с помощью стеклянных электродов и на пламенном фотометре, позволяет заключить, что в первом случае можно определять концентрацию ионов натрия в диапазоне 0,001—0,2 н. с точностью 1—5% [123]. Поскольку большинство катион-чувствительных электродов имеет некоторую остаточную водородную функцию, желательно поддерживать pH в области 7—9. Производятся также электроды с удовлетворительной селективностью по отношению к ионам калия .  [c.286]

    Большие преимущества стеклянного электрода как средства удобного и быстрого определения протонной активности послужили стимулом для разработки других мембранных -электродов, проявляющих селективную чувствительность к присутствующим в среде катионам или анионам. Подобные электроды называются ионоселективными. [c.342]

    В ионоселективных электродах применяют мембраны, способные к обмену только с определенными типами ионов из раствора. Первые электроды этого типа были подобны стеклянному электроду — в них использовали стекла специального состава, в которых некоторые катионы связаны лабильно и мОгут замещаться подходящими ионами из раствора. На этом принципе созданы ионоселективные электроды, потенциалы которых зависят от концентрации определенного вида ионов, таких, как Li+, Na+, К , РЬ+, s+, Ag+, Т1+ и др. Наиболее широкое применение среди этих электродов нашли те, которые чувствительны к ионам Na+, Li+ и Ag+. [c.342]


    Таким образом, чувствительные к ионам водорода стеклянные электроды наиболее эффективно используются в апротонных растворителях при условии, что внутренний раствор также апротонный чувствительные к катионам стеклянные электроды можно успешно применять без каких-либо модификаций. [c.221]

    Электрохимия стеклянных электродов, чувствительных к катионам. [c.142]

    Применение стеклянных электродов, чувствительных к катионам, к изучению комплексов щелочных металлов. I. Система натрий — яблочная кислота. [c.159]

    Достоинствами стеклянного электрода являются независимость потенциала от присутствия окислителей, быстрота установления потенциала, простота работы. Недостатком является большое омическое сопротивление стеклянной пленки, достигающее нескольких миллионов ом, что требует применения особо чувствительной аппаратуры для измерения э. д. с. Кроме того, стеклянный электрод не может быть использован в щелочных растворах, при pH > 9, так как в этой среде он уже не является водородным электродом и на величину его потенциала начинает оказывать влияние присутствие других катионов, особенно катионов щелочных металлов. В сильно кислых растворах стеклянный электрод тоже не дает простой зависимости потенциала от [Н ]. Указанные особенности стеклянного электрода обусловлены физико-химическими свойствами стекла. [c.300]

    Иммобилизацию фермента проводят двумя способами [542 — 544]. В одном из них фермент добавляют к гелю акриламида и полученную смесь накладывают на найлоновую ткань. Эту ткань наматывают в один слой на ион-чувствительную стеклянную головку катион-селективного электрода и закрепляют на ней резиновым кольцом. По второму способу получают электрод с жидкой мембраной. Найлоновую ткань погружают в буферный раствор, содержащий определенное количество фермента. Оба электрода (I и П типов) покрывают диализной бумагой и хранят в буферном растворе до момента использования. [c.187]

    Электроды, чувствительные к ряду катионов и анионов, можно изготовить на основе мембраны или пленки, содержащей жидкий ионообменник [4]. Конструкция электрода такого типа показана на рис. 15-2, о. Маленький диск из пористого гидрофобного материала разделяет внутренний и внешний растворы электролита. По всему своему периметру диск контактирует с органическим растворителем, не смешивающимся с водой, который находится в кольцевом зазоре. Растворим в этом растворителе соль нужного нам иона с противоионом относительно большой молекулярной массы и со значительно более высокой растворимостью в органической фазе, чем в воде. Под действием капиллярных сил растворитель заполнит поры диска, осуществляя электрический контакт с обоими водными растворами. За счет этого установится равновесие между общими ионами в мембране и растворах. Потенциал внутреннего электрода подчиняется уравнению Нернста практически аналогично стеклянному электроду. Несколько примеров электродов с жидкими мембранами приведено в табл. 15-1. [c.321]

    За последние годы были разработаны стеклянные электроды, чувствительные к катионам — не только к водороду, но и к другим ионам. Избирательность достигается изменением состава стекла, но в настоящее время чисто эмпирическим путем [140, 141]. [c.300]

    Потенциал чувствительного к катионам стеклянного электрода как функция концентрации одного катиона определяется уравнением (9). Когда присутствуют два вида одновалентных катионов А и В , наблюдается более сложное соотношение [c.300]

    Стеклянные электроды, хотя и имеют твердую мембрану из ионоселективного стекла, по механизму аналогичны электродам с жидкостной мембраной. Различные сорта специальных ионоселективных стекол способны обмениваться с раствором соответствующими однозарядными катионами металлов, а также ионами водорода. Это позволило разработать ряд катионочувствительных стеклянных электродов и наиболее широко применяемые рН-чувствительные электроды. [c.237]

    Измерение pH-одна из наиболее часто встречающихся процедур в химической лаборатории. Стеклянный электрод, чувствительный к ионам водорода, и электрод сравнения в комбинации с высокоомным вольтметром образуют исключительно полезный аналитический прибор - рН-метр. Достоинствами этой системы являются быстрота, чувствительность, низкая стоимость, воспроизводимость, а также то, что в процессе измерения проба не расходуется и может использоваться вновь. Это относится и к другим ИСЭ, которые появились в последние годы. В настоящее время можно приобрести или разработать за умеренную стоимость ИСЭ, чувствительные к определенным катионам или анионам. Рабочий диапазон этих сенсоров обычно охватывает концентрации от 10 до 10 М, хотя многие сенсоры можно использовать и при более низких концентрациях. Поскольку отклик ИСЭ является логарифмическим, воспроизводимость измерений остается постоянной во всем их динамическом диапазоне. [c.116]


    Попытки изготовить калий-селективный стеклянный электрод до настоящего времени оказались безуспешными. Все сорта стекол, которые применялись для этих целей, оказались обратимыми и к другим однозарядным ионам. Такие электроды называют катион-чувствительньши. Чтобы перевести электрод из одной формы в другую, его обычно вымачивают длительное время в растворе, содержащем соответствующий ион металла, время от времени заменяя раствор. У катион-чувствительных стеклянных электродов коэффициенты селективности к различным ионам убывают в ряду НГ Ж" > Na" > NH4", Li", Rb", s" > a " и т.д. В отсутствие ионов натрия и калия (что бывает крайне редко) катион-чувствительные электроды достаточно хорошо реагируют на ионы NHt", Li", Tl", Си", Rb", s", Ag" и могут служить датчиками при потенциометрическом титровании этих ионов. Как и при применении натрий-чувствительных электродов, мешающее действие ионов Н" в этом случае устраняют, поддерживая концентрацию последних на низком уровне. [c.189]

    В настоящее время доступны два вида стеклянных электродов, чувствительных к катионам. Чувствительность натриевого электрода к катионам уменьшается в ряду Ag+ > Н+ > Na+ > К+. Изменение чувствительности так называемого катионочувствительпого электрода соответствует ряду Н+>-Ag+> К+, > Na+> Li+. Пределы обнаружения зависят от [c.301]

    Стеклянный электрод относится к большой группе ионселек-тивных электродов, т. е. электродов, чувствительных к определенному иону. В кислых и нейтральных средах стеклянный электрод обладает высокой селективностью к ионам водорода, а в щелочных становится селективным к катионам щелочного металла. За счет подбора состава стекла его катионную функцию можно увеличить и создать набор катиончувствительных стеклянных электродов (Б. П. Никольский, М. М.-Шульц, Дж. Эйзенман), при помощи которых определяют активность ионов На+, К+, Ag+, NH4, Т1+, Ы+, Сз+ и даже органических катионов. [c.137]

    Стеклянный электрод относится к большой группе ионселективных электродов, т. е. электродов, чувствительных к определенному иону. В кислой и нейтральной средах стеклянный электрод обладает высокой селективностью к ионам водорода, а в щелочной становится селективным к катионам щелочного металла. Введение в состав стекла оксидов бария, церия, лантана и замена натрия на литий значительно расширяют диапазон Н+-функции стеклянного электрода и позволяют создать стеклянные электроды, работающие в диапазоне pH от 2 до 14 при температуре, не превышающей 100—150°С. С другой стороны, введение в состав стекла оксидов алюминия и бора в сильной степени увеличивает его катионную функцию. Таким путем удалось создать набор катиончувст-156 [c.156]

    Потенциал стеклянного электрода (27% Ка О, 8% А1. 0а, 65% ЗЮз) линейно зависит от логарифма концентрации ионов серебра до 10 молъ/л [901] и не изменяется в присутствии катионов двухвалентных металлов ионы натрия действуют в 80 раз слабее, а калия — в 220 раз слабее, чем катионы серебра. Хорошие результаты получены при титровании серебра раствором хлорида магния. Ионы меди(П), свинца(П) и кадмия не мешают определению при соотношении 50 1. Потенциал электрода, одпако, зависит от pH. Стеклянный электрод использован также в качестве индикаторного на серебро при титровании ортованадатом натрия при pH 8—9 [1427]. Электрод из стекла ВН68 [1196] при выдерживании в течение нескольких суток в 0,1 М растворе нитрата серебра приобретает свойства серебряного электрода. По чувствительности и скорости установления равновесия при изменении концентрации серебра он превосходит реакцию на ионы натрия. При pH 6,0 с этим электродом можно определить до 10 г-ион/л ионов серебра. Электроды, изготовленные из алюмосиликата лития и алюмосиликата натрия, также реагируют на изменение концентрации ионов серебра в растворе [667]. Потенциал первого электрода зависит линейно от концентрации ионов серебра в растворе и не зависит от концентрации ионов натрия и калия при 1000-крат-ном избытке последних. [c.99]

    Более обширное исследование катионных стеклянных электродов в пропиленкарбонате, ацетонитриле и ДМФ было выполнено Мак-Клюром и Редди [292]. Нернстовские наклоны 53—59 мВ (рис. 3) были получены в интервале концентраций от до 10 2 М (где поправки на коэффициенты активности и диффузионные потенциалы малы) для ионов К и N3" (фоновый электролит 0,1 М Ви4НС104). Отрицательные результаты получены для ионов и Ыа+ в ДМФ по-видимому, эти ионы реагируют с остаточными аминами. До проведения измерений электроды пропитывались в течение 24 ч в растворах соответствующих (исследуемых) солей, причем в каждом растворителе использовались различные стеклянные электроды. По отношению к катионам щелочных металлов наблюдалась очень плохая селективность, что согласуется с результатами наблюдений Бодена [43]. Потенциал электрода достигает равновесного значения (с точностью до 1 мВ) в течение 5—10 с, что гораздо меньше соответствующего времени для чувствительных к ионам водорода стеклянных электродов в апротонных растворителях. При хранении стеклянного электрода в течение 6 мес в пропиленкарбонате, содержащем 10 М ионов не было обнару- [c.220]

    Биология и медицина. Начало биологическим применениям стеклянных электродов с металлической функцией ( катион-чувствительных ) положили работы Эйзенмана с сотрудниками (1957 г.). Результаты работы, проведенной под руководством Эйзенмана, дали возможность биологам получать данные об активности ионов калия и натрия непосредственно с места их действия (in situ) в биологических процессах. В этих работах подчеркивается и другая сторона вопроса для ряда биологических явлений (возникновение биопотенциалов, клеточная проницаемость и связанные с ней процессы нервного возбуждения, кажущаяся специфичность многих клеток и тканей по отношению к ионам К ) физико-химические закономерности оказываются во многом сходными с теми, которые имеют важное значение в функционировании стеклянных и мембранных электродов. Это повышает интерес и значимость самой ионообменной теории стеклянного электрода. [c.331]

    Проверить правильность представлений о том, что ошибки стеклянного электрода в щелочной области являются следствием ионного обмена, следует независимьщ от изучения э. д. с. путем. Таким независимым путем является определение величины и характера адсорбции катионов на поверхности стекла. Измерения адсорбиии а стекле затруднены ее малой абсолютной величиной, поэтому, чтобы оценить величину адсорбции ионов на стекле, можно либо сильно увеличить поверхность стекла, измельчив его, и на порошке стекла определить адсорбцию катионов по разности концентрации растворов до и после адсорбции, либо сильно повысить чувствительность аналитических методов и измерять адсорбцию катионов непосредственно на поверхности стекла. [c.838]

    На рис. 11-5 показано влияние оксида алюминия на сигнал стеклянного мембранного электрода. Если стеклянный электрод идеально-отвечает на присутствие ионов водорода в обычном диапазоне pH, то потенциал электрода будет линейно изменяться с измерением pH (диагональная сплошная линия на рис. 11-5). Электроды, изготовленные из обычного известково-натриевого стекла, проявляют ожидаемый линейный отклик на ион водорода почти вплоть до рН=10, выше возникают отклонения или щелочная погрешность вследствие мешающего влияния катионов щелочных элементов ион натрия является самой больщой помехой, за которым следует ион лития и калия. Однако стеклянный мембранный электрод, состоящий из 1,7% АЬОз, 10,9% ЫааО и 87,4% (моль.) ЗЮг, ведет себя совершенно по-иному в очень сильнокислой среде наблюдается нормальный отклик на pH, но при повышении pH электрод становится заметно чувствительным к 0,1 Л1 растворам иона натрия или калия (при рН>2) и иона лития (при рН>4). При равных концентрациях иона водорода и катиона каждого щелочного металла стеклянный электрод, содержащий АЬОз, более чувствителен к иону водорода, но при рН>1 селективность такого электрода к иону щелочного металла повышается. Между 5 и 6 единицами pH пунктирные линии на нижней части рис. 11-5 становятся горизонтальными, указывая, что натриевоалюмосиликатное стекло не реагирует более на присутствие протонов, а только на присутствие ионов щелочных металлов. Хотя свойства натриевоалюмосиликатного стекла (см. рис. 11-5) не являются оптимальными, ионообменные центры во внеш  [c.380]

    Катионоселективный стеклянный электрод изготовлен аналогично водородоселективному стеклянному электроду. Электроды, чувствительные к Ыа+, К , NH4+, Ag+, получают, изменяя состав стекла. В присутствии других катионов селективность таких электродов, однако, невысока. [c.56]

    Изменяя состав стекла, можно целенаправленно менять его чувствительность к различным одновалентным катионам. Селективность катионов как функцию состава стекла изучал Эйзенман [19]. За последние годы Пранг и Стил [20] исследовали коэффициенты селективности, влияние pH и световую чувствительность ряда стеклянных электродов, поставляемых промышленностью. [c.268]

    В стеклянных электродах (рис. 2, А) ион-чувствительную мембрану обычно припаивают к инертной стеклянной трубке, в электродах с твердой мембраной ее подсоединяют к корпусу электрода с помощью цементирующих компаундов (рис. 2, Б, В). В селектроде Ружички электроактивный материал пропитывает поверхность гидрофобизован-ной графитовой таблетки (рис. 2, Г). В электродах с жидкой мембраной (рис. 2. Д) используется фильтр с известной пористостью, пропитанный ион-чувствительным органическим веществом. Ферментный электрод. представленный на рис. 2, , обычно получают, закрепляя фермент на поверхности мембраны, обменивающейся с катионом. [c.11]

    Гюильбо и Монтальво [449 — 452] установили, что уреаза, иммобилизованная, в полиакриламидном геле, обладает высокой каталитической активностью, и описали конструкцию нескольких видов преобразователя мочевины , применяемого для непрерывного определения мочевины как субстрата. Такой преобразователь мочевины можно назвать уреаз-электродом, так как его получают, нанося тонкую пленку иммобилизованной уреазы на катионный стеклянный электрод (Бекман 39137 или 39047), чувствительный к ионам а.ммония. Специфичность к субстрату. мочевине, проявляется после иммобилизации фермента в слое акриламидного геля на поверхности стеклянного [c.153]

    Покрытый ферментом электрод дает линейную зависимость потенциала от логарифма концентрации мочевины в пределах 5 10 — 10 моль/л, наклон кривой составляет 50 мВ/декада. Зависимость потенциала электрода от логарифма концентрации хлорида аммония также линейна NH4 I был растворен в таком же буферном растворе, в котором растворена и мочевина. Чувствительность ферментного электрода даже выше, чем у непокрытого гелем стеклянного электрода. Такую высокую чувствительность электрода с иммобилизованным ферментом к низким концентрациям катиона можно объяснить тем, что при pH 7,0 иммобилизованный фермент в слое геля заряжен отрицательно, т. е. слой фермента действует как катионообменник [452]. [c.155]

    Пенициллин-селективный электрод можно использовать для определения концентрации пенициллина в диапазоне 10 -5-10 моль/л. pH пробы оказывает решающее влияние на работу электрода, так как концентрация ионов водорода влияет на растворимость и стабильность пенициллина, а также на активность фермента. При pH < 5 пенициллин малорастворим, а при pH > 8 нестабилен. Хоу и Пул [586] нашли, что оптимальная активность пенициллиназы наблюдается в диапазоне pH 5,8—6,8 для всех видов пенициллина, представленных в табл. 16.1. Наибольшая чувствительность и скорость установления потенциала электрода имеет место при pH 6 — 7, и, как обычно, для проведения анализа можно рекомендовать среднее значение pH 6,4. Электрод работает по крайней мере в течение двух недель, время отклика составляет от 15 до 30 с. По самой своей природе электрод чувствителен не только к ионам водорода, но и ко многим однозарядным катионам. Для того чтобы исключить влияние посторонних ионов, Куллен и др. [585] сконструировали новый пенициллин-селективный ферментный электрод, который изготовлен таким образом, что иммобилизация фермента происходит в результате адсорбции пенициллиназы на пористом стеклянном диске, который фиксируется на плоской поверхности стеклянного рН-электрода. Такой электрод чувствителен только к пенициллину и не меняет свой потенциал в присутствии однозарядных катионов. Кроме того, электрод проще [c.198]

    Щелочная ошибка стеклянных электродов обусловлена чувствительностью их потенциалов по отношению к ионам щелочных металлов. Этот факт заставил Лендьеля и Блюм [19] исследовать стекла, содержащие главным образом алюмо- и боросиликаты, которые проявляли избирательность к ионам щелочных металлов в широких пределах pH. Эйзенман с сотр. [20] провели тщательное исследование электродных свойств натриевоалюмосиликатных стекол в широком интервале составов . Они впервые показали, что селективность к различным катионам систематически меняется с составом стекла. Ниже изложены рекомендации Эйзенмана, [c.269]


Смотреть страницы где упоминается термин Катион-чувствительные стеклянные электроды: [c.132]    [c.189]    [c.158]    [c.401]    [c.226]    [c.68]    [c.111]   
Смотреть главы в:

Определение pH теория и практика -> Катион-чувствительные стеклянные электроды

Определение рН теория и практика -> Катион-чувствительные стеклянные электроды




ПОИСК





Смотрите так же термины и статьи:

Электрод катион-чувствительный

Электрод стеклянный



© 2024 chem21.info Реклама на сайте