Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление железа (II) серебром (определение золота)

    Для платиновых металлов в соединениях характерны практически все степени окисления от О до +8. При этом отмечается тенденция к понижению максимальных степеней окисления в горизонтальных рядах. В вертикальных диадах обычно наблюдается соответствие степеней окисления. Так, элементы первой диады (Ки—Оз) могут проявлять максимальную степень окисления +8 (даже в соединениях первого порядка), элементы второй диады (КЬ—1г) достигают степени окисления +6 (в комплексных соединениях), а палладий и платина имеют типичные степени окисления +2 и +4. Элементы первой диады напоминают по свойствам элементы УПВ-группы — технеций и рений (подобно тому как железо напоминает марганец). Элементы же последней диады проявляют определенное сходство с элементами 1В-группы— серебром и золотом (подобное сходству между никелем и медью). [c.417]


    Рядом преимуществ обладает графитовый электрод, с ко-горым можно определить металлы, образующие со ртутью амальгамы, и такие металлы, как серебро, и другие, а также анионы и многие органические соединения. Использование пленок позволяет определить металлы с переменной валентностью. Для этого в анализируемый раствор вводят реагент, вступающий в реакцию с окисленной или восстановленной формой исследуемого вещества, получающейся в результате электрохимической реакции, с образованием нерастворимой пленки на электроде, которую затем растворяют при непрерывно изменяющемся потенциале. Подобный прием осуществлен для определения железа до 1.10 М в растворах щелочи с графитовыми электродами [51]. На графитовом электроде были определены железо (И ) и медь (II) [52], серебро [53], золото и серебро на графитовом электроде в виде пасты [54], [c.89]

    На рис. 17 видно также, что при снятии полярограммы ртути (II) [или смеси ртути (II) и железа (1И)] в направлении увеличения положительной поляризации электрода на вольт-амперной кривой появляется анодный пик, после чего сила тока падает до нуля. Этот пик отражает процесс окисления ртути, которая выделилась на электроде во время его поляризации при потенциалах более отрицательных, чем +0,7 в (НВЭ). Совершенно аналогичная картина наблюдается в случае полярографирования золота, серебра, меди и других катионов, восстановление которых сопровождается выделением осадка металла на платиновом электроде, с той лишь разницей, что положение анодных пиков относительно оси абсцисс будет различным чем более электроположителен выделившийся металл, тем при более положительном потенциале происходит его окисление. Потенциал, соответствующий анодному пику того или иного металла, не является постоянной, величиной и зависит от целого ряда факторов, в первую очередь от состава фона, от скорости снятия поляризационной кривой и от количества металла, выделившегося на поверхности индикаторного электрода. От последних двух факторов зависит также глубина пика, а именно чем больше скорость наложения потенциала и чем больше выделилось металла на электроде, тем больше анодный ток. Если соблюдаются одни и те же условия снятия вольт-амперных кривых, то глубина пика оказывается прямо пропорциональной концентрации ионов металла в растворе, а также времени предварительного его осаждения на электроде. Эта закономерность положена в основу полярографических определений с предварительным накоплением вещества на твердом индикаторном электроде 125-127 [c.61]


    Результаты большой экспериментальной работы по выяснению влияния добавления промоторов к серебряному катализатору опубликованы в патентной литературе. Вероятно, необходимо произвести измерения электропроводности во время реакции каталитического окисления на одной и той же пленке. Было найдено, что добавление в качестве промоторов небольших количеств золота, железа и меди увеличивает активность катализатора, тогда как добавление гидроокиси натрия или кальция понижает активность катализатора практически до нуля. Определение электронных свойств пленок серебра, содержащих эти примеси, могло бы дать важные сведения о природе каталитических процессов при окислении этилена. [c.271]

    В металлический свинец, свинцовый королек, в случае необходимости, освобождается от шлака и затем взвешивается. При чистых свинцовых рудах этот метод дает хорошие результаты, и опытный работник при параллельных определениях должен достигать совпадения в 0,2 — 0,4% РЬ. Однако, метод этот имеет ряд источников ошибок. Прежде всего, некоторые металлы, как, например, серебро, золото, висмут, медь, сурьма и олово более или менее полностью переходят в свинцовый королек, так как они со свинцом сплавляются, наличие же мышьяка в присутствии серы и железа обусловливает пониженные результаты, вследствие образования свинецсодержащей шпейзы. Присутствие сульфатов приводит также к потере свинца, ибо из содержащих сульфат шлаков даже при применении сильных восстановителей не удается полностью восстановить свинец. Затем потеря свинца может еще произойти или вследствие слишком высокой температуры сплавления, вызывающей ошлакование или окисление свинца, или вследствие частичного распыления содержимого тигля из-за неправильного сплавления. [c.295]

    Альфонси [9—13] провел широкое исследование потенциостатического выделения и определения содержания сурьмы в сплавах, состоящих из свинца, олова, висмута и меди. Танака [14—16], работавший, главным образом, с синтетическими образцами, определил условия, при которых следует производить отделение сурьмы от золота, серебра, ртути, меди, висмута, кадмия, цинка и ванадия в целом ряде общеизвестных электролитов. Данлэп и Шульц [17] разработали две кулонометрические методики, дающие возможность определять содержание сурьмы в каждой из ее окисленных форм отдельно, а также полное содержание сурьмы. По первой методике после предварительного восстановления сурьмы (V) в присутствии гидразингидрата сурьма (П1) восстанавливается до амальгамы на ртутном катоде при потенциале —0,28 в в фоновом электролите, содержащем 0,4Ai винной кислоты и М соляной кислоты. По второй методике сурьма (V) сначала восстанавливается до сурьмы (П1) при потенциале —0,21 в, а затем далее до амальгамы при потенциале —0,35 в. Процесс восстановления проводится в электролите, содержащем 0,4 М винной кислоты и 6 М соляной кислоты. Даже в присутствии небольших количеств мышьяка, свинца, олова, железа или урана можно добиться точности 0,5% (средняя квадратичная погрешность) при содержании сурьмы 5 мг. В табл. 1 приведены различные условия эксперимента при определениях сурьмы потенциостатическим методом. [c.45]

    В электролизер определенным образом помещают аноды из пирометаллургически рафинированной меди и катоды из чистой меди. При пропускании электрического тока (определенного напряжения) на катоде осаждается чистая медь, а аноды, состоящие из сырой меди (с примесями цинка, железа, олова, никеля, висмута), растворяются в результате процессов окисления. Неметаллические примеси и металлы, менее активные, чем медь (серебро, золото, платина, платиновые металлы), находящиеся в анодах, выпадают в виде шлама на дно электролизера. Из анодного шлама извлекают серебро, золото, платину и платиновые металлы. [c.689]

    Наряду с реакциями нейтрализации и замещения наиболее широко при титровании органических и неорганических соединений применяются реакции окисления. Окислители, используемые при титровании неорганических соединений, также широко используются при титровании органических соединений. Например, неорганические агенты ионы церия (IV) и меди (И), бихромат, феррицианид, перманганат, галогены, бромат, иодат, гипогалогениты, а также органические реагенты хлорамин В и Т и реагент Тильмана используются более чем в 10 случаях каждый (иногда их применение ограничивается определением индивидуальных соединений). К числу окислителей, используемых не так часто (от 3 до 10 случаев, как указано в таблицах в Части 2), относятся ионы золота (П1), железа (П1), марганца (П1), ртути (И), а также соединения свинца (IV), перкупрат, перйодат и ванадат. Известны лишь один или два примера использования соединений серебра (II), персульфата, этоксирезазурина и этоксирезаруфина, нафтахинон-4-сульфонат натрия, нитропруссида, надбензойной и пикриновой кислот. [c.62]



Смотреть страницы где упоминается термин Окисление железа (II) серебром (определение золота): [c.224]    [c.120]    [c.24]    [c.27]   
Смотреть главы в:

Кинетические методы анализа Издание 2 -> Окисление железа (II) серебром (определение золота)




ПОИСК





Смотрите так же термины и статьи:

Золото из серебра

Окисление железа

Окисление серебром



© 2025 chem21.info Реклама на сайте