Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматографические и другие адсорбционные методы газового анализа

    История трех видов хроматографии — газовой, жидкостной адсорбционной и ионообменной — оказалась очень похожей. Эти методы проходят одни и те же этапы развития, как бы заимствуя опыт друг у друга. Поэтому полезно вспомнить ход становления первых двух, более сформировавшихся, направлений хроматографического анализа, а затем и историю ионообменной и ионной хроматографии. В сущности ионная хроматография является современным автоматизированным вариантом ионообменной хроматографии, но с принципиальным отличием это уже не только метод разделения, но и метод определения. Точно так же, как и современная газовая и жидкостная адсорбционная хроматография. ( [c.5]


    Классические методы исследования полимеров — светорассеяние, седиментация, осмометрия, вискозиметрия и другие сталкиваются с существенными трудностями при анализе разветвленных и неоднородных по составу полимеров. Еще более сложен, а зачастую и невозможен анализ этими методами смесей таких полимеров с линейными полимерами. Подобные смеси часто возникают при синтезе сложных полимерных систем — блоксополимеров, привитых сополимеров и разветвленных гомополимеров, когда наряду с основным продуктом получаются соответствующие линейные гомополимеры. Сочетание ГПХ с классическими методами анализа полимеров и с другими хроматографическими методами (адсорбционной и пиролитической газовой хроматографиями) позволяет проводить анализ и таких сложных систем. При этом адсорбционную хроматографию можно с успехом использовать в тонкослойном варианте (ТСХ), что позволяет осуществлять качественный и количественный анализ структурной и химической неоднородности фракций, полученных микропрепаративным ГПХ-фракционированием. С помощью пиролитической газовой хроматографии (ПГХ) можно находить брутто-состав полимеров, а классические методы дают сведения о таких средних макромолекулярных характеристиках, как характеристическая вязкость, среднемассовая и среднечисленная молекулярные массы. [c.230]

    ХРОМАТОГРАФИЧЕСКИЕ И ДРУГИЕ АДСОРБЦИОННЫЕ МЕТОДЫ ГАЗОВОГО АНАЛИЗА [c.143]

    Известно [13—15], что адсорбционная, газовая, жидкостная, тонкослойная хроматографии играют существенную роль в химии ОСС нефти. Хроматографический метод концентрирования и анализа ОСС стал широко применяться с 1954 г. [132]. Преимуществами этого метода являются мягкие условия разделения, возможность варьировать адсорбенты и растворители, условия хроматографирования, что позволяет в отличие от других методов одновременно и наиболее полно выделить все классы ОСС из различных нефтяных дистиллятов, в том числе из высококипящих. Основным недостатком адсорбционного метода является совместное выделение сераорганических соединений с ароматическими углеводородами. [c.41]

    Для анализа газовых смесей обычно применяют химические методы, низкотемпературную разгонку, адсорбционные методы , в частности, хро.матографический метод и другие . Из указанных выще методов большое распространение в настоящее время получили хроматографические методы анализа. [c.469]

    Методы хроматографии значительно расширяют область применения адсорбционных методов в газовом анализе. Это особенно существенно для определения состава многокомпонентных смесей. Однако применение хроматографического метода для количественного анализа газов затрудняется необходимостью сочетания его с другим — химическим или физико-химическим — анализом, так как сам хроматографический метод не дает возможности определить точно содержание отдельных компонентов [c.231]


    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    Наиболее распространенным методом определения объемного состава газовых смесей в настоящее время является хроматографический. Этот метод анализа основан на различии адсорбционных свойств газов при прохождении их через слой сорбента. В настоящее время хроматографический анализ получил большое распространение из-за его относительной простоты, достаточной точности и малой затраты времени. На рис. П-2 представлена принципиальная схема хроматографа марки ГСТЛ, выпускаемого заводом Моснефтекип. Действие прибора основано на поглощении отдельных компонентов смеси сорбентом, заполняющим колонки 5. В качестве сорбента применяются активированный уголь, окись алюминия, силикагель или так называемые молекулярные сита. Исследуемая газовая смесь транспортируется через прибор газом-носителем. В качестве газа-носителя обычно используется воздух, его поступление регулируется дросселем 1. Пройдя поглотитель 2, одна часть которого заполнена щелочью, а другая — силикагелем, осушенный и очищенный газ-носитель поступает в пробоотборник 3. Из пробоотборника смесь краном 4 направляется в сорбционные колонки, выполненные в виде четырех последовательно соединенных трубок 5, заполненных сорбентом. Колонки снабжены нагревательными спиралями, питаемыми переменным током через автотрансформатор. В результате нагрева сорбента изменяется его способность поглощать различные [c.47]

    Поскольку при очень малых количествах анализируемых углеводородных и других газов разделение их связано с адсорбцией и десорбцией, то дополнительпые данные по этому вопросу приведены в главе 1П, касающейся хроматографических и других адсорбционных методов газового анализа. [c.141]

    Газо-адсорбционная хроматография (ГАХ) начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. П. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбци-онный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве газа-носителя — диоксид углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Вяхиревым независимо друг от друга. Метод был назван объемно-хроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.163]

    В кннге описаны разнообразные методы исследования химии поверхности твердых тел, адсорбции газов, паров и растворенных веществ, а также газовой и молекулярной жидкостной (адсорбционной и ситовой) хроматографии. Наряду с вакуумными метода.ми измерения изотерм адсорбции рассмотрены калориметрические измерения теплот адсорбции и теплоемкости адсорбционных систем, хроматографические, спектроскопические, радиоспектроскопические, масс-спектро-метрические, электронно-микроскопические и другие методы, позволяющие исследовать пористость и химическое строение поверхности адсорбентов, носителей, катализаторов и состояние адсорбированных молекул. Книга написана авторами, принимавшими непосредственное участие в разработке и применении описанных экспериментальных методов, и содержит много полезных практических советов, составленных на основе многолетнего опыта. Описания ряда новых методов содержат краткие изложения их теоретических основ. Большое внимание уделено анализу погрешностей измерений и конкретным примерам. [c.2]


    Стандартные методы [45—47] ягаляются результатом многолетних исследований, проводимых во многих странах. Степень разделения вполне приемлема, хотя обычно полного отделения одного компонента от другого осуществить не удается (см. табл. 3.6). Однако использование адсорбционной спектроскопии в УФ-области и флуориметрического анализа для идентификации и количественного определения позволяет избежать необходимости хроматографического выделения чистых ПАУ из смесей. Тем не менее, сходство спектров некоторых ПАУ может затруднить анализ. В течение ряда лет были разработаны остроумные методы, позволяющие обойти эти трудности (см. об этом в разд. 3.4.11). Помимо спектрометрических определений предпринимались попытки полностью разделить ПАУ с помощью бумажной, тонкослойной и газовой хроматографии (эти вопросы в данной главе не рассматриваются), а также с помощью комплексо-образования. Следует упомянуть также об использовании для разделения ПАУ противоточного распределения [196, 197]. Тай и Белл [215] предложили метод. жидкостно-жидкостной хроматографии, основанный на образовании комплексов с сил1-тринитро- [c.153]


Смотреть страницы где упоминается термин Хроматографические и другие адсорбционные методы газового анализа: [c.367]    [c.80]   
Смотреть главы в:

Методы анализа газов -> Хроматографические и другие адсорбционные методы газового анализа




ПОИСК





Смотрите так же термины и статьи:

Адсорбционные методы

Адсорбционный газовый анализ

Адсорбционный хроматографический метод

Анализ газовый

Анализ хроматографические методы

Анализ хроматографический

Другие методы

Метод хроматографического адсорбционного анализа

Методы газового анализа

Методы хроматографические

Хроматографический адсорбционный

Хроматографический адсорбционный анализ



© 2025 chem21.info Реклама на сайте