Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация и различие газов

    В свободнодисперсных системах частицы дисперсной фазы могут свободно перемещаться по всему объему дисперсионной среды. Это общее свойство позволяет оценивать некоторые происходящие в таких системах явления с общих позиций. В данном разделе рассматриваются в основном разбавленные системы, в которых движение частиц не осложнено их агрегацией. При этом условии для всех свободнодисперсных систем характерны общие закономерности седиментации, электрокинетических и молекулярно-кинетических свойств. Некоторые различия, не столько качественные, сколько количественные, имеют системы с жидкой и газообразной дисперсионными средами. Они в основном обусловлены меньшими вязкостью и плотностью газа по сравнению с жидкостью (для газа вязкость меньще в л 50 раз, а плотность в л 100 и более раз) и более сильным взаимодействием жидкости с дисперсной фазой (сольватация). Увеличение дисперсности и концентрации дисперсной фазы может приводить к существенным различиям в некоторых свойствах систем, что дает основание для их классификации по этим признакам. Свободнодисперсные системы делят на аэрозоли, порощки, лиозоли, суспензии, эмульсии и пены. [c.184]


    Классификация и различия газов. Нефтяные газы разделяют по происхождению на две группы 1) природные (естественные) и 2) искусственные [c.241]

    Классификация по способу относительного перемещения фаз. Различают четыре варианта проявительная, или элюентная, хроматография, фронтальная, вытеснительная и комбинированный метод. Эти варианты рассмотрены применительно к колоночной хроматографии, т. е. к тем случаям, когда неподвижная фаза находится в трубке (колонке), а подвижная, содержащая анализируемую смесь, движется в этой трубке в виде потока жидкости или газа. [c.13]

    По способу передачи тепла различают теплообменные аппараты поверхностные и смесительные. В первом случае передача тепла происходит через разделяющие твердые стенки, во втором — непосредственным контактом (смешением) нагретых и холодных сред (жидкостей, газов, твердых веществ). Поверхностные аппараты подразделяются на рекуперативные и регенеративные. В рекуперативных аппаратах тепло от горячих теплоносителей к холодным передается через разделяющую их стенку, поверхность которой называется тепло-обменной поверхностью, или поверхностью нагрева. В регенеративных аппаратах оба теплоносителя попеременно соприкасаются с одной и той же стенкой, нагревающейся (аккумулируя тепло) при прохождении горячего потока и охлаждающейся (отдавая аккумулированное тепло) при последующем прохождении холодного потока. Регенераторы являются аппаратами периодического действия, рекуператоры могут работать как в периодическом, так и в непрерывном режимах. Классификацию теплообменных аппаратов по конструктивному признаку мы рассмотрим ниже параллельно с описанием их устройств. [c.323]

    Гидравлический способ классификации основывается на различии скорости оседания частиц различных размеров в жидкости. Такая классификация осуществляется пропусканием жидкости или газа через слой исходного материала, при этом частицы, скорость осаждения которых меньше линейной скорости восходящего потока, выносятся из слоя, остальные частицы остаются в нем. При классификации гидравлическим способом материал разделяется не только по размерам частиц, но и по их плотности. При заданной скорости потока из слоя выносятся не только мелкие частицы, но и более крупные, имеющие меньшую плотность. [c.494]

    Источники вредных выбросов для отрасли различают по региональной принадлежности. Классификация источников выбросов по региональному признаку предполагает учет химического состава исходного сырья (табл. 1.3) [6]. Так, эксплуатация нефтегазовых и газохимических комплексов, добывающих и перерабатывающих сероводородсодержащий газ, отличается от предприятий, работающих с бессернис-тым газом. При эксплуатации бессернистых месторождений в атмосферу поступают углеводороды, оксиды азота и углерода а при эксплуатации мало- и высокосернистых газовых, газоконденсатных, газонефтеконденсатных месторождений помимо вышеназванных - более вредные вещества (оксиды серы, сероводород, тиолы и др.). [c.11]


    В. И. Вернадский дает несколько иную классификацию природных газов, основанную на способах нахождения или проявления этих последних, различая так называемые свободные газы и газы, связанные с твердыми телами или жидкими растворителями. [c.33]

    Можно классифицировать детекторы по характеру протекающего в нем процесса. По этой классификации различают детекторы химические, физические и детекторы, показания которых зависят или не зависят от природы газа-носителя. [c.171]

    Процессы адсорбции классифицируют в соответствии с типом взаимодействия адсорбата с адсорбентом. Физико-химическая классификация основывается на гом положении, что перераспределение компонентов между объемной фазой и поверхностным слоем может происходить под действием физических сил или в рез льтате химической реакции между адсорбатом и адсорбентом.. Химическую реакцию в этом случае можно представить либо как химическое присоединение атомов (мо лекул). либо как ионообменное взаимодействие. Таким образом, согласно физико-химической классификации различают физическую молекулярную) адсорбцию, хемосорбцию (химическое присоединение атома, молекулы) и ионный обмен. В данном разделе рассматривается, главным образом, физическая адсорбция газов и паров. [c.130]

    В основу классификации торцовых уплотнений положены динамические характеристики и особенности их упругих элементов (пружин с манжетами и резиновыми кольцами, упругих прокладок, сильфонов и мембран с пружинами и без пружин и др.). Различают одинарные, двойные и тройные торцовые уплотнения. Наиболее часто используют одинарные уплотнения, реже двойные и очень редко тройные. Тройные торцовые уплотнения применяют для герметизации крупных турбокомпрессоров, двойные торцовые уплотнения—для герметизации оборудования с химически активными жидкостями и газами. Одинарные уплотнения используют при работе с нейтральными (водой, нефтепродуктами) и с некоторыми агрессивными средами. [c.80]

    В 1983 г. в нашей стране была введена в действие новая классификация запасов месторождений, перспективных и прогнозных ресурсов нефти и газа, сравнение которой с широко используемой в ряде стран классификацией Американского нефтяного института (АНИ — АГА) приведено в табл. 1.1 [6]. Несмотря на различия в методах оценки и учета отдельных категорий, в целом применяемые в СССР и США классификации запасов и ресурсов нефти, основанные на степени их изученности, сопоставимы между собой. [c.10]

    В основу классификации экспериментальных методов рентгенографии можно положить либо способ регистрации дифракционного спектра (фотографический или ионизационный), либо агрегатное состояние исследуемого объекта (поли- или монокристалл, аморфное вещество, жидкость или газ). Несмотря на существование единого физического подхода к проблеме дифракции рентгеновских лучей (см. Введение и гл. I), различия в методических особенностях экспериментальных исследований различных объектов весьма существенны и приводят к появлению специальных областей рентгеноструктурного анализа. Например, значительная информация о белках, полимерах и ряде других объектов сосредоточена в области малых углов рассеяния от нескольких угловых минут до 3—5 градусов. С позиций физики рассеяния рентгеновских лучей между этой и всей остальной частью дифракционного спектра нет никакой принципиальной разницы, однако, специфические экспериментальные трудности, в первую очередь — малая интенсивность рассеянного излучения, привели к созданию специального рентгеновского оборудования — малоугловых рентгеновских камер и дифрактометров [1]. [c.111]

    Р. X. различают также по тепловому эффекту (экзо- и эндотермич. р-ции, идущие с выделением или поглощением тепла соотв.), механизму (простые и сложные реакции). Важный тип сложных Р. х.— цепные реакции. Р. х., протекающие только в прямом направлеиии, наз. необратимыми протекающие как в прямом, так и в обратном направлениях,— обратимыми. В основу кинетич. классификации м. 6. положена молекулярность реакции (моно-, би- и тримолеку-лярные р-ции) или порядок реакции. По агрегатному состоянию реагентов различают газо-, жидко- н твердофазные Р. X. Еслн реагенты и продукты р-ции находятся в одной фазе, Р. X. наз. гомогенной, если р-ция происходит по иов-сти раздела фаз — гетерогенной. Особую группу составляют топохимические реакции, происходящие на пов-сти раздела тв. фаз реагента и (или) продукта. См. так- [c.499]

    Классификация жидкостей. Свойства жидкостей зависят от природы структурных единиц и от природы межчастичного взаимодействия. Различают жидкости моноатомные (сжиженные благородные газы), молекулярные, ионные (расплавленные соли), металлические (расплавленные металлы), жидкие полупроводники. Некоторые из перечисленных классов имеют разновидности. Так, молекулярные жидкости могут быть с водородными связями и без них (апротонные жидкости). Наиболее хорошо изучены моноатомные жидкости, а также расплавленные металлы. Из молекулярных жидкостей наибольшее внимание исследователей было уделено воде. [c.228]


    Гетерогенные системы различают по агрегатному состоянию. Если твердая фаза распределена в жидкой (взвесь твердых частиц в жидкостях), то такую систему называют суспензией. Если и дисперсная фаза и дисперсионная среда— жидкости (взвесь капелек одной жидкости в другой), то такую систему называют эмульсией. Если дисперсионная среда — газ (например, воздух), а дисперсная фаза — твердая или жидкая, то систему называют аэрозоль. Общая классификация дисперсных систем по агрегатному состоянию приведена в табл. ХУП.З. [c.225]

    Классификация систем по дисперсности условна в том отношении, что последняя может меняться непрерывно, так что качественное различие имеет место лишь вдали от границ и исчезает при приближении к ним. Дисперсные системы могут быть классифицированы по агрегатному состоянию дисперсной фазы и дисперсной среды. Примеры соответствующих двухфазных систем приведены в табл. 12.1. Отметим только невозможность случая Г—Г, так как смеси газов представляют собой, вообще говоря, гомогенные системы. Тем не менее даже и в этом случае иногда приходится принимать во внимание флуктуации плотности. Именно их наличием, например, и связанным с этим светорассеянием объясняется голубой цвет неба если бы атмосфера была совершенно однородна, она была бы оптически пуста, и цвет неба был бы черным. [c.257]

    Классификация по агрегатному состоянию. Наиболее распространенная классификация дисперсных систем основана на различии в агрегатном состоянии дисперсной фазы и дисперсионной среды (табл. 2), Системы с газовой дисперсионной средой независимо от природы газа называют аэрозолями. Системы с жидкой дисперсионной средой — лиозоли. В зависимости от природы жидкости лиозоли делят на гидрозоли, бензозоли и т. п. [c.154]

    Каждому топливу в той или иной мере свойственно содержание воды. Будучи количественно выраженным, оно представляет собою так называемую влажность топлива. В теплотехнической практике влажность твердого топлива относят к рабочему топливу и выражают в процентах веса. Влажность газообразного топлива выражают в граммах на 1 м сухого газа. Вода топлива различается по своему происхождению и характеру связи с топливной массой. Наиболее сложной и до сих пор не вполне определенной является классификация воды твердого топлива. Так, например, в таком характерном (А отношении содержания воды топливе, как торф, всю заключенную в нем воду можно подразделить на  [c.5]

    Используя ранее указанную классификацию тактов, будем различать процессы с постоянной и переменной массой газа. В процессах с переменной массой газа развитие теплообмена на поверхностях камеры определяется перемещением масс заряда через органы газораспределения. В процессах с постоянной массой газа основным (внешним) источником движения заряда служит перемещение поршня. [c.134]

    Впрочем, иногда мы сталкиваемся с такими случаями, когда трудно отличить физическое превращение от химического. Примером таких превращений является взаимодействие газов с поверхностью твердых тел, называемое адсорбцией. Однако в подавляющем большинстве случаев различие между физическими и химическими превращениями совершенно очевидно, и, руководствуясь их определениями, мы облегчаем себе классификацию и изучение различных превращений в лаборатории и в природе. [c.21]

    Существуют классификации природных горючих ископаемых, основанные на различиях их физических свойств твердые (угли, асфальт, озокерит и др.), жидкие (нефти) и газообразные (болотный газ, газы нефтяных и газовых местоскоплений и др.). Хотя эта классификационная схема проста и удобна для пользования, в ней ввиду отсутствия генетического признака в одну группу попадают различные горючие ископаемые (например, уголь, асфальт, озокерит и др.), отличающиеся как по составу исходного ОВ, так и по условиям превращения его в конечный продукт. [c.12]

    Классификация газов, растворенных в пластовых водах, по составу была предложена М.И. Субботой (1961), а затем Л.М. Зорькиным (1971). Эта классификация приведена в табл. 1.3. Авторы различных классификаций проводят границу углеводородных компонентов для определения класса и типа газа в пределах 75-100%. Разницы в химическом составе свободных и растворенных газов нет. По условиям нахождения газов в породе Е.В. Стадник выделяет три группы рассеянные газы пород, газы подземных вод и газы залежей. Рассеянные делятся на газы закрытых и открытых пор, среди которых различаются 1) свободные, 2) растворенные в воде, 3) сорбированные минеральной частью породы, 4) сорбированные органическим веществом, 5) меж-слоевых пространств минералов (Зорькин и др., 1985). [c.48]

    Всего для газовой хроматографии предложено более 60 типов детектирующих систем. По общепринятой классификации детекторы подразделяются на дифференциальные и интегральные по форме зарегистрированного сигнала. Дифференциальные детекторы измеряют мгновенное различие в концентрации вещества в потоке газа-носителя. Хроматограмма, зарегистрированная таким детектором, представляет собой ряд пиков, площадь которых пропорциональна количеству разделенных соединений. Интегральные детекторы измеряют суммарные количества соединений, выходящих из колонки. Хроматограмма в этом случае ступенчатая, высота ступеней пропорциональна количеству соответствующих соединений. [c.260]

    Методы газовой классификации основаны на использовании различия траекторий движения крупных и мелких частиц в двухфазном потоке газ— твердые частицы. Отклонение траекторий движения достигается благодаря разной зависимости действующих на частицы альтернативных сил от размера частиц. При размещении в определенных местах аппарата поверхностей ввода и вывода достигается повышение содержания частиц соответствующих размеров в продуктах разделения. [c.14]

    АПЕ, где происходит классификация дисперсных частиц по размерам за счет различия их скоростей осаждения в сплошной фазе (газе, жидкости). [c.226]

    И.В. Высоцкий предложил в своей классификации различать газы, формирующиеся в земной коре, циркуляционные и реликтивные (космические) с определением для них исходного материала, характера газообразующих процессов, формы нахождения или проявления и химического состава. [c.21]

    И. С. Старобинцем с соавторами предложена классификация рассеянных газов по формам нахождения газов в природе, причем основной упор делается на рассеянные углеводородные газы (рис. 95). В первую очередь следует различать относительно легкоизвлекаемые газы открытых пор и трудноизвлекае-мые газы закрытых пор. Фактические данные показывают, что породы и отдельные минералы с практически нулевой пористостью часто содержат рассеянные газы в сорбированном породой состоянии, заполняющие межкристаллические и межслой-ные пространства. [c.259]

    Ряд авторов полагает, что выделить группу пневматолитовых месторождений в общей классификации эндогенных месторождений не представляется возможным, так как на пневмато-литовый этап позднее накладывается гидротермальный, а для различия этих процессов критерии отсутствуют [Смирнов С. С., 1947 г. Бетехтин А. Г., 1953 г. Лазаренко Е. К-, Лазько Е. М., Пизиров А. В., 1963 г.]. Действительно, при снижении температуры и давления летучих компонентов магмы, из которых главным является (надкритический) водяной пар, он из однофазного газового состояния переходит вначале в двухфазное, газо-жидкостное, а затем и жидкое состояние. С образующимися водными растворами, к которым могут присоединяться и воды осадочной толщи земли, связано образование гидротермальных месторождений. [c.150]

    Приведенные уравнения для расчета объемных коэффициентов массоотдачи справедливы при определенных гидродинамичееких режимах. Из-за многообразия предложенных классификаций гидродинамических режимов и пределов их существования, вызванного различием визуальной оценки структуры газожидкостного слоя, практическое применение указанных уравнений затруднено. Уравнения для определения коэффициентов массоотдачи, отнесенных к единице межфазной поверхности [66, 267, 373], также имеют расхождения в части влияния определяющих гидродинамических параметров. Это вызвано различным подходом к оценке поверхности контакта фаз. Определяющим размером для критериев Nu и Re в некоторых уравнениях [210, 262, 291] служит не имеющий реального выражения средний диаметр пузырька Для учета влияния структуры газожидкостного слоя и циркуляции газа некоторые авторы [9, 217, 291] вводят в критериальное уравнение симплекс djdn,, в котором принимают п. = 4 мм, считая, что при таком размере пузырька в нем не происходит циркуляции газа и дальнейшее уменьшение размера пузырька не влияет на массообмен. [c.125]

    Исходя из электронной конфигурации, можно различать четыре класса элементов инертные газы, типичные элементы, переходные элементы и внутрирядные переходные элементы. Эта классификация основывается на том, в какой степени заполнены подуровни 3, р, (1 и /, т. е. на том, заполнены или нет те или иные орбитали. При заполненном подуровне следует обратить внимание на числа электронов в различных уровнях (слоях) у данного атома и числа электронов в соответствующих уровнях у атома предыдущего по порядковому номеру или ближайшего следующего инертного газа. [c.103]

    По классификации, введенной Фарадеем, различают два типа проводников — ир0в0(3ны/сы первого и второго рода. Электрическую проводимость в проводниках 1-го рода (металлы, полупроводники) обеспечивают электроны, а в проводниках 2-го рода (растворы электролитов, расплавы, твердые электролиты, ионизированные газы)—ионы. Если электрическая цепь включает, по крайней мере, один проводник 2-го рода, то прохождение постоянного электрического тока — I = ад/сИ ( —время) — по этой цепи сопровождается электрохимическими реакциями на обоих проводниках 1-го рода, находящихся в контакте с проводником 2-го рода. Анодом будем называть проводник 1-го рода, на котором протекает электрохимическая реакция окисления, а сам проводник несет избыточный положительный заряд по отношению ко второму проводнику 1-го рода. Последний будем называть катодом-, на нем протекает электрохимическая реакция восстановления. [c.444]

    По технол. признаку П.с. делят на флотацшо ионов и молекул и флотацию дисперсий (см. Ф.ютация). Принципиальное различие между ними состоит в том, что при флотации ионов и молекул имеются две фазы р-р и пузырьки газа, а при флотации дисперсий-три пузырьки газа, мелкие твердые частицы и жидкий р-р. Возможна также классификация П.с. по выделяемым объектам выделение ионов электролитов (напр., выделение с применением ПАВ неорг. ионов из очень разб. р-ров с целью извлечения металлов или очистки воды от хим. и радиоактивных загрязнений) выделение ПАВ (напр., при разделении очень близких по строению ПАВ, таких, как додецилсулъфат и додецилбензолсульфонат На, при очистке от ПАВ пром. и бытовых стоков) выделение орг. в-в с низкой мол. массой (напр., с целью очистки воды) выделение орг. в-в с большой мол. массой (напр., разделение р-ров белков) микрофлотация коллоидных частиц и микроорганизмов (напр., с целью очистки стоков от вредных в-в). [c.453]

    КЛАССИФИКАЦИЯ ГАЗОВЫХ ГОРЕЛОК Осуществление выбранного способа сжигания газа требует применения соответствующих горелочных устройств. В настоящее время в литературе описано большое количество различных горелок, как широко применяемых и оправдавших себя на практике, так и сравнительно мало распространенных. Как правило, каждая из горелок имеет свои преимущества и недостатки. Несмотря на обилие имеющихся конструкций, внешне весьма отличающихся, все горелки могут быть объединены в небольшое число групп, характеризующихся общими признаками. Различия между горелками в пределах этих групп определяются главным образом конструктивными решениями, способом и степенью сложности изготовления, условиями эксилуатащш, а не особенностями и показателями процесса горения газа. [c.164]

    Сорбция — процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе (сорбентами). Классификация сорбционных методов основана на различии механизма взаимодействия веществ с сорбентами. Различают адсорбцию (физическая адсорбция и хемосорбция), распределение веществ между двумя несмеши-вающимися фазами (растворитель и жидкая фаза на сорбенте) и капиллярную конденсацию — образование жидкой фазы в пбрах и капиллярах твердого сорбента при поглощении паров вещества. В чистом виде каждый из перечисленных механизмов, как правило, не реализуется, и обычно наблюдаются смешанные механизмы. [c.239]

    В соответствии с минимальными размерами диаметров промежуточных каналов Баррером [2] были введены три категории молекулярных сит. Однако следует отметить, что эта классификация не точна, так как сорбционная способность некоторых сит, имеющих каналы больших размеров, но вода из которых полностью удалена, может быть сходна с сорбционной способностью цеолитов, имеющих узкие каналы. При тщательном выборе катионных форм цеолита их можно эффективно использовать для широкого ряда хроматографических разделений. Область применения данного метода может быть значительно расширена путем использования его при различных температурах, так как две молекулы, сорбирующиеся с одинаковыми скоростями при одной температуре, могут иметь совершенно разные скорости сорбции при понижении температуры сорбции. Так как сорбционная емкость цеолитов обычно намного больше для полярных молекул, чем для неполярных, то разделить эти две группы соединений очень легко. Это различие в сорбции позволяет использовать цеолиты для осушки газов. Создание в последние годы молекулярных сит типа Linde (см. стр. 75) позволило проводить такие процессы в заводских масштабах. Более того, при использовании для осушки газов молекулярные сита имеют большие преимущества по сравнению с такими реагентами, как активированная окись алюминия и силикагель, в особенности там, где требуется эффективно [c.67]

    Логично классифицировать каталитические процессы газоочистки по типу протекающих реакций окисление, гидрирование, гидролиз и т. д. Однако четко провести такую классификацию не всегда возмон1но, так как одновременно протекают различные реакции и весьма трудно установить, какая именно реакция преобладает. Поэтому обычно процессы различают но удаляемым примесям или но характеру химичесх ой реакции. Именно этот не всегда последовательный принцип и принят при дальнейшем изложении материала. Важнейшие применяемые в промышленности процессы каталитической очистки газа охватывают а) превращение органических сернистых [c.317]

    При классификации водородно-кислородных элементов низкого давления, работающих при температуре окружающей среды, следует различать два типа элементов 1) разработанные Кордещом элементы ЮКК ( Юнион карбайд компани ), в которых намокание электродов предотвращается путем гид-рофобизации 2) элементы Юсти — Винзеля с гомопористыми электродами, проникновение электролита в которые предотвращается благодаря образованию пор одинаковой величины, соответствующей давлению газов. [c.39]

    Существует множество конструкций ТА, и их классификация может проводиться по разным признакам. По характеру развития теплового режима во времени различают ТА, работающие в стационарном (неизменном во времени) и нестационарном (периодическом или циклическом) режимах. В большинстве случаев ТА работают в стационарном режиме (рекуперативные ТА), что обеспечивает постоянство всех параметров (главным образом температур) на выходе из аппарата. В поверхностных ТА теплота от горячего теплоносителя к холодному передается через разделяющую теплоносители поверхность (обычно это поверхности металлических труб). В контактных ТА обладающие физикохимическим свойством взаимной нерастворимости теплоносители имеют друг с другом непосредственный контакт. Различают ТА по виду обменивающихся теплотой теплоносителей жидкость—жидкость пар— жидкость газ—жидкость газ—газ. В зависимости от наличия фазовых превращений и технологического назначения ТА различают нагреватели, охладители, конденсаторы, испарители (кипятильники). По характеру движения теплоносителей внутри рабочего объема ТА бывают с вынужденным (принудительным) движением и с естественной циркуляцией теплоносителей. По способу организации прохождения теплоносителей через аппарат теплообменники разделяются на одно- и многоходовые. Встречаются ТА, в которых обмениваются теплотой не два, а три и более теплоносителей. По конструктивным признакам различают ТА трубчатые, пластинчатые, спиральные, с оребренньпйи теплообменными поверхностями и без оребрения, с наличием компенсации температурных расширений труб и кожуха и без такой компенсации, а также по некоторым другим конструктивньпй признакам. Различным аспектам теплообменной аппаратуры посвящена обширная литера-т>фа [1, 3-5, 8, 11-14, 16, 17,23, 34 ]. [c.338]

    Адсорбенты по той же классификации, т. е. в зависимости от химического строения их поверхности, определяющего способность к тому или иному виду межмолекулярных взаимодействий, делятся на три типа. К первому типу относятся неспецифические адсорбенты, не несущие на своей поверхности ни ионов, ни каких-либо функциональных групп, связей или центров с локально сосредоточенными на периферии зарядами и не обладающие электронодонорными или электроноакцепторными центрами. На таких адсорбентах любые молекулы адсорбируются неспецифически. К адсорбентам этого типа можно отнести графитированные сажи, в особенности графити-рованную около 3000 °С термическую сажу, поверхность которой состоит в основном из базисных граней графита. Кроме графитированной сажи к неспецифическим адсорбентам относится чистый нитрид бора, молекулярные кристаллы благородных газов и насыщенных углеводородов, а также пленки из таких углеводородов и пористые углеводородные полимеры. Адсорбция на таких адсорбентах мало зависит от локального распределения в адсорбируемых молекулах электронной плотности, в частности, от наличия я-связей и неподеленных электронных пар. Различие в валентных состояниях атомов углерода в таких адсорбентах, как, например, графит, с одной стороны, и насыщенные углеводороды — с другой, сказывается на адсорбции незначительно, хотя и может быть выявлено в некоторых системах (подробнее см. разд. 1 гл. П и рис. 11,12) [90, 91]. [c.22]


Смотреть страницы где упоминается термин Классификация и различие газов: [c.49]    [c.307]    [c.493]    [c.356]    [c.465]   
Смотреть главы в:

Технология переработки нефти и газа -> Классификация и различие газов




ПОИСК





Смотрите так же термины и статьи:

Различие



© 2025 chem21.info Реклама на сайте