Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрические свойства конденсированных фаз

    Значительная часть металлических элементов в газовой фазе существует в виде нейтральных двухатомных молекул (см. рис. 5.10). Остальные металлические элементы в газовой фазе чаще всего одноатомны и электрически нейтральны. Однако все металлы, конденсируясь в жидкости и кристаллы, образуют фазы, которые являются хорошими проводниками электричества и характеризуются высокими координационными числами, как показано на рис. 5.13. Электропроводность металлов в жидком и кристаллическом состояниях почти полностью обусловлена подвижностью электронов, а не ионов. Очевидно, в конденсированном состоянии металлы содержат электроны, которые не локализованы на конкретных атомах или небольших группах атомов. Часть электронов в конденсированных металлах делокализована— эти электроны могут перемещаться по всей конденсированной фазе под действием даже небольшой разности электрических потенциалов. Свойства металлов более подробно обсуждаются в гл. 16, 17 и 33. [c.462]


    Улетучивание ингредиентов из резин влияет не только на изменение свойств самих уплотнений, но также на изменение характеристик материалов и приборов, находящихся в вакууме и расположенных вблизи резины или контактирующих с ней. Например, выделяющиеся из резины продукты могут конденсироваться на оптических системах и иллюминаторах, меняя их прозрачность, или изменять электрические характеристики контактов в вакууме, взаимодействуя с их металлической поверхностью, и т. д. Кроме того, выделяющиеся из резин различные продукты могут воздействовать на организм человека и представлять опасность в пожарном отношении [423, 424]. [c.209]

    Элементарный водород занимает особое место среди других элементарных веществ по некоторым свойствам (существование в виде газа, состоящего из двухатомных молекул в конденсиро-вапном состоянни летучесть, отсутствие электрической ироводи-мости, непрочность кристаллической решетки молекулярного типа) водород сходен с элементарными окислителями, по другим свойствам (значение электродного потенциала в водных растворах)— с металлами, хотя и мало типичными. [c.111]

    НОЙ атмосфере, происходит конденсация диоксида кремния в чрезвычайно тонкодисперсной форме. Окислению может подвергаться этилсиликат образующиеся пары S1O2 затем конденсируются. В наиболее широко распространенном способе предусматривается сгорание тетрахлорида кремния в смеси с природным газом, при этом выделяются хлористый водород н пары диоксида кремния, которые конденсируются в виде очень рыхлого, занимающего большой объем, порошка. При контролировании условий сжигания примерно так, как это делается при получении углеродной сажи, можно приготовлять вещества с различными размерами первичных частиц и разными степенями коалесценции частиц. В другом способе предусматривается испарение кремнезема в электрической дуге с конденсацией образующихся паров. Порошки такого типа рассматриваются здесь только по той причине, что из некоторых их разновидностей могут приготовляться коллоидные дисперсии. Соответствующие способы получения и свойства формируемых на основании этих способов порошков кремнезема будут рассматриваться в гл. 5. [c.456]

    Реакции свободных радикалов нри низких температурах уже изучались в течение последних нескольких лет рядом исследователей. Свободные радикалы генерировали термически, фотохимически или в электрическом разряде и затем конденсировали на поверхности, поддерживаемой при температуре жидкого азота или жидкого гелия. Различные физические дгетоды, такие, как эмиссионная и абсорбционная спектроскопия, парамагнитный резонанс и другие, использовались для изучения свойств замороженных радикалов. В ряде случаев [6, 15, 16] сообщалось, что в определенный момент при повышении температуры свободные радикалы снова приобретают подвижность и реагируют с образованием стабильных молекул. При этом выделяются свет и теило, а в некоторых случаях реакция происходит со взрывом. [c.557]


    Получение из азота. Смеси азота и водорода подвергались действию электрического разряда, а также бомбардировке катодными лучами [39—41]. Хотя гидразин и образуется при этом в количествах, достаточных для идентификации, однако выход его крайне незначителен. Указанные наблюдения побудили английского исследователя Геди [42] поднять вопрос о том, не может ли гидразин образовываться также в процессах синтеза аммиака или при термическом его разложении. В связи с этим были поставлены опыты, в процессе которых смеси водорода и азота пропускали с большой скоростью над катализаторами, испэльзуемыми в процессе синтеза аммиака. Было найдено, что при температуре 437°С примерно 4 вес. % продукта реакции, конденсирующегося при низких температурах, представляет собой соединение, обладающее восстанавливающими свойствами. Хотя это соединение и не было идентифицировано, однако можно предположить, что оно являлось гидразином остальную часть продукта реакции составлял аммиак. Эгот результат мог бы быть обнадеживающим, несмотря на то, что реакция термодинамически невыгодна. Однако выход гидразина (или, точнее, соединения, обладающего восстановительными свойствами) на единицу объема реакционной смеси чрезвычайно мал было найдено, что в условиях эксперимента менее 1% азотоводородной смеси вступает в реакцию с образованием аммиака и гидразина. [c.22]

    Как уже говорилось, наиболее важными силами, действующими на границах раздела, являются дисперсионные силы и силы термического возбуждения. Иногда существенный вклад могут давать и электрические силы. Так как адсорбция паров в объеме легко осуществима, важно более подробно рассмотреть концепцию адсорбционного объема, тем более что скачкообразный переход между жидкостью и паром не представляется правдоподобным. Сведения по этому вопросу можно почерпнуть, если рассмотреть растекание жидкости по поверхности другой жидкости или твердого тела, а также из опытов по адгезии пластинок, разделенных малыми расстояниями. Первые точные опыты в этом направлении были проведены Харди. Он отметил, что имеется два возможных пути растекания по поверхности другой жидкости. Капля может уплощаться с образованием толстой пленки или может распределяться на поверхности монослоем. По твердому телу капля может просто растекаться, или образуемый ею пар может конденсироваться на поверхности твердого тела. Исследуя поведение линз бензола на воде, Харди нашел, что они должны достичь критической толщины прежде, чем их поверхность проявит свойства жидкого бензола. При попытках уменьшить их толщину линзы становились нестабильными и распадались на несколько линз критической толщины, находящихся в равновесии с монослоем. [c.33]

    Описанным путем конденсируются однородные молеку лы в жидкие и твердые агрегаты, а иногда и в уплотненные газы. Последним, в частности, обусловлено посинение кислорода, метана и других газов под высоким давлением. Неоднородные люлекулы, соединяясь под действием вандерваальсовых сил, образуют сольваты , твердые кристаллогидраты и некоторые виды комплексных соединений, иной раз довольно прочных. В среднем, однако, силы межмолекулярной связи раз в 100 меньше сил химической связи. Если для последних характерно свойство насыщаемости, то молекулярные силы его лишены электрическое поле одного диполя может одновременно влиять па поля нескольких близких диполей. Объясняется это тем, что нрп сцеплепип молекул электроны не переходят от одного партнера к друго.му, а остаются обособленнылт при каждом из них. [c.34]

    Опыты ставились при атмосферном давлении. В первой серии пары ацетона из колбы, нагреваемой на электрической бане, поступали в трубку с катализатором (взятым в количестве 200 мл), нагретым до нужной температуры, продукты конденсировались в холодильнике и возвращались в колбу. Газ выводился из системы. Загрузка ацетона составляла 158 г. длительность опыта — 4 часа. По окончании опыта отложившийся на катализаторе кокс и смолы выжигались продувкой воздухом при 400— 500°. В качестве катализаторов применялись активированная аскапская глина (катализатор I [2]) и искусственный алюмосиликат, примененный в одной из наших предыдущих работ (катализатор IV [3]). Газ анализировался на приборе Орса. Непредельные углеводороды в газе определялись с помощью сернокислотного метода Добряпского [4]. В нескольких опытах газ подвергался ректификации, и результаты ректификации подтвердили данные сернокислотного анализа. Жидкие продукты, оставшиеся в колбе, обрабатывались водой, в водном слое определялись кислотность и ацетон. Анализ серебряной соли образовавшейся кислоты показал, что она является уксусной кислотой. Не растворимые в воде продукты собирались с целью провести детальное исследование их состава, описанию которого будет посвящена другая работа. Здесь мы ограничиваемся указанием, что не растворимые в воде продукты выкипали без разложения в пределах от 40 до 180° и имели свойства, указанные в таблицах . Опыты ставились при температурах катализатора от 170 до 260°. Качественно состав газа мало зависел от температуры опыта. В выделяющемся газе содержалось от 46 до 79,5% (по объему) изобутилена. Подробный анализ газа, полученного над катализатором I при 230°, приводится ниже  [c.237]


    Выше мы рассматривали прохождение тока но всему объему полимера, однако ток может протекать и но поверхности материала. Свойство препятствовать протеканию тока по поверхности тела называется удельным поверхностным электрическим сопротивлением. Оно различно у разных полимеров и значительно зависит от внешних условий. Известно, что фарфоровый электронзолятор является отличным диэлектриком, но во влажном воздухе на его поверхности конденсируется тончайший слой влаги, который является проводником, и электрический ток, минуя трло изолятора, проходит по нему. [c.135]


Смотреть страницы где упоминается термин Электрические свойства конденсированных фаз: [c.386]    [c.115]   
Смотреть главы в:

Химия Издание 2 -> Электрические свойства конденсированных фаз




ПОИСК





Смотрите так же термины и статьи:

Конденсированные ВВ

Пар конденсирующийся

Электрические свойства

Электрические свойства углеводородов с конденсированными



© 2025 chem21.info Реклама на сайте