Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Атомные частицы заряды

    Поскольку протон — единственная положительно заряженная частица, обнаруженная в ядре, то порядковый номер элемента равен числу протонов ядра. В ядре алюминия, порядковый номер которого 13, должно содержаться 13 протонов, но так как его атомная масса равна 27, то в его ядре, как было установлено позднее, должно содержаться еще 14 нейтронов. Нейтроны изменяют массу ядра, но не влияют на его заряд. В ядре атома натрия, порядковый номер которого 11, атомная масса 23, должно сод жаться 11 протонов и 12 нейтронов. (И протоны, и нейтроны находятся в ядре, поэтому их называют нуклонами . ) [c.157]


    Ядро атома содержит протоны и нейтроны. Протоны и нейтроны имеют почти одинаковые массы, но отличаются зарядом. У нейтрона нет электрического заряда, в то время как протон имеет положительный заряд, который точно компенсирует отрицательный заряд электрона. В табл. 1-1 указаны заряды трех перечисленных элементарных частиц, а также их массы, выраженные в атомных единицах массы. Атомная единица массы (а. е. м.) определяется как одна двенадцатая часть (точно) массы атома углерода, в ядре которого содержатся 6 протонов и 6 нейтронов. В такой шкале протоны и нейтроны обладают массами, которые близки к 1 а. е. м. каждая, но не равны точно этой величине. (Здесь уместно указать, что в [c.14]

    Важную роль в квантовой теории атома играет теория простейших одноэлектронных атомных частиц (атом водорода и водородоподобные ионы Не+, Ь1 +, Ве +...), состоящих из ядра с зарядом +26 и электрона с зарядом — е . Обычно она называется теорией атома водорода. [c.51]

    Перейдем к рассмотрению закономерностей поведения электронов в атоме. Согласно современным представлениям, периодичность изменения свойств элементов, расположенных в порядке возрастания заряда ядра (атомного номера элемента), обусловлена периодичностью изменения в строении электронной оболочки атомов. Поэтому изучение строения этих оболочек — одна из важнейших задач химии. В модели, предложенной Э. Резерфордом, электроны рассматривались как частицы, движущиеся по плоским орбитам [c.25]

    Согласно протонно-нейтронной теории атомных ядер, число протонов в ядре равно заряду ядра 1 (при выражении его, как обычно, в единицах заряда электрона), а сумма числа протонов и числа нейтронов равна массовому числу А, т. е. массе атома, выраженной в единицах атомных весов и округленной до целых единиц. Таким образом, число нейтронов равно А—I. Отсюда следует, в частности, что различные изотопы данного элемента отличаются друг от друга только числом содержащихся в ядре нейтронов при одинаковом числе протонов. Оба вида частиц, образующих ядра атомов, — протоны и нейтроны — обозначаются общим термином — нуклоны. [c.51]

    Атомные ионы характеризуются наличием положительного или отрицательного заряда и одновременным отсутствием у такой атомной частицы неспаренных электронов. [c.8]

    Несмотря на широкое использование окислительных чисел, следует помнить, что это формальные заряды, приближающиеся к истинным значениям только для одноатомных ионов в состоянии идеального газа. Целочисленный заряд атомной частицы уменьшается при перенесении ее из вакуума в" конденсированную фазу. [c.18]


    Слово электромагнитное употребляют для описания этого излучения потому, что на языке волн ему соответствуют электрические и магнитные поля, изменяющиеся с частотой излучения. Свет поглощается или рассеивается веществом либо посредством взаимодействия его электрического поля с электрическими зарядами атомных частиц, либо посредством взаимодействия его магнитного поля с магнитными моментами атомных частиц. Первое из двух названных взаимодействий намного сильнее, поэтому в данной книге при рассмотрении поглощения света веществом будем учитывать только электрическое взаимодей ствие. [c.16]

    В работах Темкина с сотр. [48] развита модель поверхностного электронного газа. В модели принимается, что при адсорбции Л частиц в поверхностный слой металла переходит от них 7)7 электронов. Таким образом, г] соответствует эффективному заряду адсорбированной частицы в атомных единицах. Заряд, [c.127]

    Изучению и установлению характера взаимодействия растворенного вещества и растворителя посвящены работы многих исследователей. Результаты многих из них суммированы в обзорах, монографиях, например [28, 40-41]. Основное внимание в этих работах обращалось на установление зависимости термодинамических, кинетических и структурных характеристик сольватации (гидратации) от общих свойств атомно-молекулярных частиц (зарядов, радиусов, геометрии, числа и вида функциональных групп), природы и состава растворителя (строения молекул, структуры, диэлектрической проницаемости, характера взаимодействий между моле- [c.22]

    Выше предполагалось, что при перезарядке не происходит искривления траекторий атомных частиц ( чистая перезарядка ). В рамках такого приближения, справедливого при температурах Т > 1000 К, не учитывалась часть соударений, сопровождаемых одновременной передачей заряда и импульса (поляризационный захват). В работе [34] была предпринята попытка рассмотреть последний процесс и оценить его влияние на масс-диффузионный разделительный эффект в изотопной смеси. При этом был рассмотрен лишь предельный случай, когда чистой перезарядкой можно пренебречь. Относи- [c.355]

    Состав атомных ядер. Наименьший заряд и линейные размеры имеет ядро атома водорода — первого элемента периодической системы. У него имеется только один электрон. Его ядро, названное протоном, может входить в состав ядер других элементов. Масса протона очень мало отличается от массы атома водорода и составляет 1836 электронных масс. Кроме того, в состав атомных ядер входят частицы, масса которых очень близка к массе протонов и равна 1838 электронных масс, но которые отличаются от них отсутствием электрического заряда. Из-за этого они получили название нейтроны и обозначаются о . Протоны и нейтроны часто называют нуклонами, что значит ядерные частицы. В 1932 г. Д. Д. Иваненко и Е. Н. Ганой высказали предположение, что атомные ядра состоят из протонов и нейтронов. Это предположение затем было обосновано В. Гейзенбергом и вошло в науку под названием протоно-нейтронной теории строения атомных ядер. Так как массы протона и нейтрона очень близки и каждая примерно равна одной атомной единице массы, то сумма протонов и нейтронов приблизительно выражает атомную массу. Заряд же ядра равен числу протонов, так как нейтроны — электронейтраль-ные частицы и на заряд ядра не влияют. Сумма числа протонов и числа нейтронов названа массовым числом. Между числом протонов, нейтронов и массовым числом существует зависимость  [c.32]

    Строение атомных ядер. Изотопы. Согласно современным представлениям, атомные ядра состоят из протонов и нейтронов. Протон (от греч. нротос — первый)—элементарная частица, обладающая массой 1,00728 а. е. м. и положительным зарядом, равным по абсолютной величине заряду электрона. Нейтрон также представляет собой элементарную частицу, но не обладающую электрическим зарядом масса нейтрона составляет 1,00867 а. е. м. Протон принято обозначать символом р, нен-трон — н. [c.103]

    В настоящей главе обсуждаются методы детектирования, в основе которых лежит изменение природы носителей зарядов в смеси газов. Принципиально возможны два явления, приводящих к изменению природы носителей заряда перезарядка ионов — переход заряда от одной атомной частицы к другой  [c.114]

    Попадая в земную атмосферу, они уже на высоте около 50 км начинают заметно взаимодействовать с ядрами встречных атомов, что ведет к образованию главным образом пионов, которые представляют собой частицы с массами порядка 0,15 (в единицах атомных весов). Заряд их может быть и отрицательным, и положительным, и нулевым. Сами по себе частицы эти очень неустойчивы (в состоянии покоя они могут существовать не более стомиллионных долей секунды). [c.551]

    Электроны. Все электроны одинаковы, т. е. имеют одинаковые физические характеристики. Каждый электрон характеризуется массой, электрическим зарядом и спином (собственным моментом количества движения). Масса электрона (покоящегося) равна 9,109-10 г, электрический заряд равен 4,803-электростатических единиц. Часто в теоретических работах абсолютную величину заряда электрона принимают за единицу (атомная единица заряда). Ниже, как правило, мы будем выражать заряды частиц через эту единицу. Тогда заряд электрона будет равен —1. Для каждого электрона определенное значение имеет квадрат вектора спина 5, выражающийся через квантовое число формулой [c.13]


    Атомные радиусы убывают в последовательности 8 > С1 > Аг, поскольку при переходе от 8 к С1 и от С1 к Аг заряд ядра возрастает на единицу. В пределах одного периода валентные электроны сильнее притягиваются к ядру с возросшим положительным зарядом, поэтому атомные радиусы соответственно уменьшаются. Для изоэлектронных (имеющих одинаковое число электронов) атомных и ионных частиц эффективные радиусы уменьшаются по мере возрастания заряда ядра (порядкового номера элемента), так как и в этом случае происходит последовательное увеличение притяжения электронов к ядру. Таким образом, указанные изоэлек-тронные частицы в порядке уменьшения эффективных радиусов располагаются в следующий ряд 8 > С1 > Аг > К > Са .  [c.405]

    Если атомное ядро изотопа элемента теряет а-частицу, то при этом образуется ядро изотопа нового элемента с массовым числом на 4 единицы и с зарядом на 2 единицы меньше исходного и, следовательно, занимающего относительно него в периодической системе место на два номера меньше. [c.64]

    Отметим, что бета-частице приписывается атомный номер , т. е. заряд ядра, равный -1, и массовое число 0. [c.324]

    В гл. 1 уже упоминалось, что атомное ядро состоит из двух типов основных элементарных частиц, протонов и нейтронов, которые в совокупности называются нуклонами. Ядро имеет положительный заряд, равный числу содержащихся в нем протонов, а это число 2 называется порядковым (атомным) номером ядра. В нейтральном атоме ядро окружено электронами, число которых равно числу протонов в ядре. Поскольку химические свойства атома определяются его электронами, все нейтральные атомы с одинаковым числом электронов (и протонов) рассматриваются как атомы одного элемента. Следовательно, порядковый номер атома указывает на его принадлежность к определенному элементу. Суммарное число протонов и нейтронов в атомном ядре называется его массовым числом, А. [c.405]

    В результате тщательного изучения ироцессов прохождения а-частнц через различные материалы было показано, что атомы обладают чрезвычайно ажурной структурой, и общий объем всех частиц, образующих данный атом, составляет лишь ничтожную долю (примерно от 10 до 10" ) объема самого атома. При этом отрицательные заряды в виде электронов находятся в разных частях атома, а все положительные заряды находятся в центральной части атома — в атомном ядре, в котором сосредоточена также и практически вся масса атома (так как масса электронов очень мала). Величина заряда ядра оказалась строго одинаковой для всех атомов данного элемента. При выражении ее в единицах, равных заряду электрона, она равняется порядковому номеру элемента в периодической системе. Очевидно, что число электронов в атоме, находящемся в нейтральном состоянии, должно быть также равно этому числу. [c.27]

    В диэлектриках электрические заряды или несущие их частицы обладают ограниченной подвижностью, в проводниках же опи перемещаются относительно свободно. Тем не менее у диэлектриков, находящихся в электрическом поле, наблюдается смещение электрических зарядов. Такое смещение зарядов в диэлектрике называется поляризацией. В зависимости от характера смещающихся в веществе заряженных частиц различают следующие виды поляризации 1) электронную, если смещаются электроны 2) атомную, если смещаются положительно заряженные ядра атомов 3) ориентационную, если смещаются или точнее изменяют свою ориентацию дипольные молекулы вещества. Существуют и другие виды поляризации, но у углеводородов они не встречаются. [c.399]

    Молекула представляет собой достаточно устойчивую совокупность атомов, связанных валентными связями. Ее особенности становятся понятными, если представить молекулу как динамическую квантовую электронно-ядерную систему. Это система атомных ядер и такого количества электронов, заряд которого равен сумме положительных зарядов атомных ядер, причем валентные электроны, находясь в волновом движении между всеми атомными ядрами, стягивают их и сближаются с ними насколько это возможно, что резко снижает потенциальную энергию системы, придает ей устойчивость. Если в подобной системе имеется некоторое число неспаренных электронов, то это свободный радикал — частица гораздо менее устойчивая, чем молекула, так как радикал не выдерживает столкновения с другими радикалами или молекулами если в данной электронно-ядерной системе имеется избыточный заряд, [c.82]

    Чем больше заряд атомного ядра, тем сильнее будет отталкиваться от него а-частица, тем чаще будут встречаться случаи сильных отклонений а-частиц, проходящих через слой металла, от пер-вонгчгального направления движения. Поэтому опыты по рассея- [c.60]

    Еще во времена Бенджамина Франклина и Джона Дальтона высказывалось предположение, что силы взаимодействия между частицами материи должны иметь главным образом электрическое происхождение. Однако поскольку одноименные заряды отталкиваются друг от друга, существовало неправильное мнение, что между одинаковыми атомами не могут возникать связи тем не менее в настоящее время все хорошо знают, что большинство распространенных газов состоит из двухатомных молекул Н2, N2, О2, р2, С12 и т.д. Эта грубая ошибка привела к почти полувековой путанице с молекулярной структурой и атомными массами так, полагали, что газообразный водород описывается формулой Н, а не Н2, воду описывали формулой НО вместо Н2О, а кислороду приписывали атомную массу 8 вместо 16. Лишь в 1913 г. Льюис ввел представление о том, что электронные пары являются тем клеем , который соединяет между собой атомы с образованием ковалентных связей, однако теоретическое объяснение роли электронных пар было дано спустя еще 20 лет. Опыты Фарадея показали, что заряды на ионах всегда кратны некоторым элементарным единицам заряда, причем моль этих зарядов составляет 1 Р, а Стоней назвал эту элементарную единицу заряда электроном. Однако Стоней отнюдь не отождествлял электрон с какой-либо частицей, которую можно было попытаться изолировать и исследовать. [c.47]

    Атом состоит из положительно заряженного ядра, которое окружено таким числом отрицательно заряженных электронов, что в целом атом оказывается электрически нейтральным. Ядро в свою очередь состоит из положительно заряженных протонов и нейтральных нейтронов масса каждой из этих частиц пpибJ изитeльнo равна 1 а.е.м. Масса электрона приблизительно равна 1/1836 части массы протона заряд электрона равен по величине, но противоположен по знаку заряду протона. Суммарное число протонов в ядре (и электронов в нейтральном атоме) называется атомным номером 2. Суммарное число протонов и нейтронов в атоме называется [c.51]

    Электроны как отдельные частицы исследовались физиками, занимавшимися изучением электрических разрядов в разреженных 1азах при больших напряжениях. Катодные лучи представляют собой пучок электронов, оторванных от атомов газа. Дж. Дж. Томсон, изучая отклонение катодных лучей в электрическом и магнитном полях показал, что эти лучи образованы отрицательно заряженными частицами, и измерил отношение заряда этих частиц к их массе. Милликен завершил эти исследования, поставив опыт с капельками масла, благодаря которому удалось измерить заряд электрона. В сочетании с результатами Фарадея это позволило вычислить число Авогадро, т. е. число электронов, составляющих 1 Г заряда, или число частиц в моле любого вещества. Масс-спектрометр, потомок газоразрядных трубок Крукса и Томсона, представляет собой современный акаля тический прибор, в котором измеряется отношение заряда к массе любой атомной или молекулярной частицы, несущей на себе электрический заряд. [c.54]

    В 1932 г. Дж. Чедвик открыл элементарную частицу, не обла-даюн1ую электрическим зарядом, в связи с чем она была названа нейтроном (от латинского слова neuter, что означает ни тот, ни другой ). Нейтрон обладает массой, немного превышающей массу протона (точно 1,008665 углеродных единиц). Вслед за этим открытием Д. Д. Иваненко, Е. И. Ганон и В. Гейзенберг, независимо дру1 от друга, предложили теорию состава атомных ядер, ставшую общепринятой. Согласно этой теории ядра атомов всех элементов [c.21]

    В этом случае более соответствует экспериментальным фактам электрическая теория адгезии /58/, которая позволяет следующим образом объяснять механизм процесса. Согласно этой теории, при тесном соприкосновений диэлектрика, каковым являются парафиновые дисперсные частицы, и кристаллического атомного тела, благодаря разности давлений электронного газа, часть электронов подложки переходит в парафиновую частицу, обра (уя двойной электрический слой между поверхностями. В результате парафиновые частицы заряжаются отрицательно, а металлическая поверхность подложки приобретает положительный заряд. По этой теории работа разрушения адгезионной связи, т.е. преодоления возникающих между поверхностями электрических сил, будет определяться формулой /56/ [c.111]

    Первая формулировка закона имела следующий вид Последовательное испускание а-частицы и двух Р -частиц а трех радиоактивных рядах, в каждом случае возвращает внутриатомный заряд химического элемента к первоначальному месту в Периодической системе, хотя его атомная масса уменьшается на 4 единицы [5, с. 162]. Узкий, частный характер такой формулировки закона просматривается явственно. Не покидает ощущение, что это маленький фрагментик, вырезанный из большого "полотна". И это ощущение усиливается из-за того, что закон привязывает реакции (кстати, только распада ) к клеткам таблицы, не давая развернуться вширь и пойти вглубь. И это легко объяснимо. Авторитет Периодической системы в то время был очень велик, да и не было другого такого теоретического обобщения знаний, которое бы цементировало химические элементы (а под ними подразумевались атомы) в единый, органически целостный объект природы и единый объект познания. [c.100]


Смотреть страницы где упоминается термин Атомные частицы заряды: [c.62]    [c.44]    [c.12]    [c.267]    [c.135]    [c.61]    [c.104]    [c.33]    [c.145]    [c.192]    [c.21]    [c.22]    [c.24]    [c.16]    [c.23]   
Химический тренажер. Ч.1 (1986) -- [ c.6 , c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Атомные частицы

Заряд частицы ВМС

Частицы заряженные

Электрический заряд атомной частицы



© 2025 chem21.info Реклама на сайте