Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения со степенью окисления

    Соединения со степенью окисления мышьяка, сурьмы и висмута—3. [c.381]

    Соединения со степенью окисления углерода —4 и соединения с металлической связью [c.450]

    Соединения со степенью окисления фосфора —3. При нагревании фосфор окисляет почти все металлы, образуя фосфиды. В зависимости от природы металла доля того или иного типа связи в фосфидах меняется в широких пределах. Так, фосфиды s-элементов И группы состава Э3Р2 можно рассматривать как ионно-ковалентные соединения. Они солеподобны, легко разлагаются водой  [c.367]


    Соединения со степенью окисления брома, иода и астата —1 [c.316]

    Соединения со степенью окисления селена, теллура и полония —2 [c.366]

    Соединения со степенью окисления азота —2. Азот, как и кислород, образует соединения перекисного типа — пернитриды. Последние можно рассматривать как производные радикалов, образующихся при последовательном разрыве связей в молекуле N2  [c.351]

    Соединения со степенью окисления азота —1. Промежуточное положение между пероксидом и пернитридом водорода по составу и структуре занимает гидроксиламин  [c.352]

    Соединения цинка, кадмия и ртути. Степень окисления цинка и кадмия в соединениях +2. Ртуть л<е образует два ряда соединений простые и комплексные соединения со степенью окисления ртути +2, а также соедннення, в основе которых находится свое- [c.330]

    Соединения со степенью окисления азота —3. При высоких температурах азот окисляет многие металлы и неметаллы, образуя нитрид ы  [c.345]

    Соединения со степенью окисления брома, иода и астата—1. Бром, иод и астат с менее электроотрицательными, чем они сами, элементами образуют бромиды, иодиды и астатиды. Связь Э — Hal в ряду фторид — хлорид — бромид — ио-днд — астатид для одного и того же элемента Э ослабевает и наблюдается общее уменьшение устойчивости соединений. Об этом, в частности, свидетельствует сравнение стандартных энтальпий и энергий Гиббса образования галидов одного и того же элемента (рис. 144). [c.300]

    Соединения со степенью окисления хлора —1. Характер химической связи, а следовательно, и свойства хлоридов, как и фторидов, закономерно изменяются по группам и периодам элеменюв (см. рис. КЮ). Так, в ряду хлоридов элементов данного периода тип химической связи изменяется от преимущественно ионной в хлоридах типичные металлов до ковалентной в хлоридах неметаллов. Понные хлориды -- твердые кристаллические вещества с высокими температурами плгвления, ковалентные хлориды — газы, жидкости или же легкоплавкие твердые вещества. Промежуточное положение занимают ионно-ковалентные хлориды. [c.287]

    Соединения со степенью окисления селена, теллура и полония —2. У селена, теллура и полония степень окисления —2 проявляется соответственно в селенидах, теллуридах и полонидах — соединениях с менее электроотрицательными, чем они сами, элементами. В этих типах соединений проявляется аналогия элементов селена и теллура с кислородом и серой. Например  [c.339]

    Соединения со степенью окисления водорода —1. В зависимости от природы связанного с ним элемента атомы водорода в соединениях могут быть поляризованы положительно (степень окисления 1) или отрицательно (степень окисления —1)  [c.275]


    Как И В случае лантаноидов, у элементов семейства актиноидов происходит заполнение третьего снаружи электронного слоя (подуровня 5/) строение же наружного и, как правило, предшествующего электронных слоев остается неизменным. Это служит причиной близости химических свойств актиноидов. Однако различие в энергетическом состоянии электронов, занимающих 5/- и 6 /-под-.уровни в атомах актиноидов, еще меньше, чем соответствующая разность энергий в атомах лантаноидов. Поэтому у первых членов семейства актиноидов 5/-электроны легко переходят на подуровень и могут принимать участие в образовании химических связей. В результате от тория до урана наиболее характерная степень окисленности элементов возрастает от - -А до +6. При дальнейшем продвижении по ряду актиноидов происходит энергетическая стабилизация 5/-С0СТ0ЯНИЯ, а возбуждение электронов на 6 -подуро-вень требует большей затраты энергии. Вследствие этого от урана до кюрия наиболее характерная степень окисленности элементов понижается от +6 до (хотя для нептуния и плутония получены соединения со степенью окисленности этих элементов и 4-7). Берклий и следующие за ним элементы во всех своих соединениях находятся в степени окисленности +3. [c.644]

    У Кислоты и основания. Как мы видели, ионизация соединений со / степенью окисления водорода +1 в жидком состоянии происходит с образованием сольватированных положительного и отрицательного ионов  [c.132]

    Соединения со степенью окисления азота —3 [c.390]

    Соединения со степенью окисления серы —2. Наиболее заметно сходство серы и кислорода в соединениях, в которых они проявляют степень окисления — 2. Оксидам отвечают сульфиды, гидроксидам — гидросульфиды, оксокислотам — сульфидокислоты (тиокислоты), например  [c.324]

    Следующие за скандием переходные элементы титан и ванадий V содержат соответственно два и три -электрона. Для них более характерны высшие степени окисления - -4 — для и - -4, + 5 — для V. Свойства соединений титана в высшей степени окисления напоминают свойства аналогичных соединений олова (например, жидкие тетрахлориды Т1С14 и 8пС 4, образование комплексов и т. д.). Соединения со степенью окисления +2 — сильные восстановители. Производные оксида титана (IV) Т10г — сложные оксиды титана — важные сегнетоэлектрические материалы. [c.154]

    Соединения со степенью окисления фтора —1. В соответствии с закономерным изменением характера элементов по периодам и группам периодической системы закономерно изменяются и свойства фторидов, например  [c.282]

    Соединения со степенью окисления кислорода —2 [c.337]

    Соединения со степенью окисления кислорода —2. Как уже указывалось, образование двух- и многозарядных одноатомных анионов Э" энергетически невыгодно (см. с. 36). Поэтому не существует соединений, содержащих ион О . Даже в кристаллических оксидах наиболее активных металлических элементов типа NaaO и СаО эффективный заряд атома кислорода составляет всего около 1—. [c.311]

    Малый радиус атомов объясняет также более высокие значения энергии ионизации металлов этой подгруппы, чем н[елоч 1ых метал. юв. Это приполит к большим различиям в химических свс)й-стлах металлов обеих подгрупп. Элементы подгруппы меди — малоактивные металлы. Они с трудом окисляются и, наоборот, нх ионы легко восстанавливаются они не разлагают воду, гидроксиды их являются сравнительно слабыми основаниями. В ряду напряжений они стоят после водорода. В то же время восемнадцатиэлектронный слой, устойчивый у других элементов, здесь еще пе вполне стабилизировался и способен к частичной потере электронов. Так, медь наряду с однозарядными катионами образует и двухзарядные, которые для нее даже более характерны. Точно так же для золота степень окисленности -)-3 более характерна, чем -f-1. Степень окисленности серебра в его обычных соедннен[ их равна - -1 однако известны и соединения со степенью окисленности серебра -j-2 и +3. [c.570]

    Соединения со степенью окисления германия, олова и свинца Усиление в ряду простых веществ Ое—5п—РЬ металлических [c.425]

    Большинство организмов (высшие растения и животные) усваивают азот в виде его соединений со степенью окисления -3 и не могут использовать азот атмосферы. То же относится и к использованию соединений азота в промышленности. [c.184]

    Соединения со степенью окисления галогенов —1 [c.45]

    Изменение характерных степеней окисления в ряду С — 51 — Ое — 5п — РЬ можно объяснить вторичной периодичностью в различии энергии П5- и //-орбиталей (табл. 28). Рост устойчивости соединений со степенью окисления +2 в ряду Ое< 5п С РЬ и ее уменьшение для соединений Э (IV) в обратной последовательности хорошо иллюстри-руют значения величины ДС для процессов диспропорционирования ЭО  [c.422]


Смотреть страницы где упоминается термин Соединения со степенью окисления: [c.498]   
Смотреть главы в:

Структурная неорганическая химия -> Соединения со степенью окисления




ПОИСК





Смотрите так же термины и статьи:

Окисления степень



© 2025 chem21.info Реклама на сайте