Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы энергия ионизации

    В табл. 1.1 приведены значения энергий ионизации некоторых атомов. Из нее следует, что наименьшее значение энергии ионизации (/ ) имеют щелочные металлы и что для данного элемента при переходе от одного значения I к другому часто наблюдается резкое изменение энергии. Так, для бора отрыв 4-го и 5-го электронов требует примерно десятикратной (ио сравнению с 1,2 и 3-м электронами) затраты энергии. В табл./1.1 указанные скачки отмечены ступенчатыми линиями. Это непосредственно свидетельствует о группировке электронов в слои. [c.32]


    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    Малые значения ионизационных потенциалов рассматриваемых элементов обусловливают их легкую ионизацию. Спектры ионов щелочноземельных элементов полностью аналогичны спектрам щелочных металлов. Энергии возбуждения этих ионов относительно малы, поэтому ужз в таких источниках, как дуга, линии ионов щелочноземельных элементов весьма интенсивны. Все щелочноземельные [c.68]

    Положительные ионы возникают в результате удаления из нейтральной частицы одного или нескольких электронов. Образование положительных ионов требует затраты энергии извне на преодоление куло-новых сил притяжения между электроном и положительным ионом. Энергия, которая необходима для этого, Ли различна для разных газов она равна произведению боб и заряда электрона на потенциал ионизации газа и для наиболее слабо связанных с молекулой электронов находится в пределах 4—25 эв . Работа ионизации у элементарных газов тем меньше, чем меньше номер их группы в периодической системе. Поэтому легко ионизируются пары щелочных металлов для ионизации инертных газов требуется большая энергия. [c.20]

    Энергии ионизации I электрона 8г, Ва и Ка не намного превышают таковые у щелочных металлов. Энергия ионизации второго электрона велика, но не настолько, чтобы это создавало трудности его отрыва. Любой окислитель отрывает от атомов сразу два электрона, поэтому одновалентное состояние в устойчивых соединениях для них неизвестно. [c.225]

    Значения ф° для бериллия и его аналогов близки к значениям ф° для элементов подгруппы лития, хотя энергии ионизации атомов элементов подгруппы ПА значительно больше, чем для щелочных металлов, ио это различие в энергиях ионизации компенсируется более высокими энергиями гидратации катионов элементов подгруппы ПА, [c.312]

    Щелочные металлы принадлежат к числу наиболее активных в химическом отношении элементов. Их высокая химическая активность обусловлена в первую очередь низкими значениями энергии ионизации их атомов — легкостью отдачи ими валентных электронов. При этом энергия ионизации уменьшается при переходе от лития к цезию (табл. 30). Ясно, что химическая активность прн этом возрастает. [c.563]


    Состояние кластеров алюминия характеризуется, как и для кластеров щелочных металлов, энергией ионизации, характеристикой стабильности — энергией диссоциации кластера, поляризацией кластера и его химической активностью, проверяемой по реакциям с другими молекулами. Вопрос о применимости к кластерам алюминия электронной оболочечной модели или модели желе может быть проверен из анализа всех этих характеристик. [c.259]

    У элементов подгруппы меди первая энергия ионизации существенно выше, чем у s-элементов I группы. Это объясняется проникновением внешнего rts-электрона под экран (п—1) с(1 -электронов. Уменьшение первой энергии ионизации при переходе от Си к Ag обусловлено большим значением главного квантового числа п, дальнейшее же увеличение энергии ионизации у Аи обусловлено проникновением 6з-электрона не только под экран 5 1 -электронов, но и под экран 4/1 -электронов. Что касается второй энергии ионизации [удаление электрона из (п—1) ( 1 -подслоя , то у всех трех элементов она близка и по значению заметно меньше, чем у щелочных металлов. [c.620]

    В табл. 19.1 приведены примеры значений ионизационных потенциалов для элементов I и И периодов периодической системы Д. И. Менделеева. Из таблицы видно, что отрыв даже первого, наиболее слабо удерживаемого электрона представляет трудную задачу, осуществимую в рамках химического эксперимента только для атомов щелочных металлов. Так, ионизация атомов водорода может стать заметной лишь при температурах порядка 10 К. Более же глубокая ионизация многоэлектронных атомов может быть осуществлена лишь в условиях горячей плазмы (10 —10 К). Поэтому для расчета энергии химической связи существенны лишь первые ионизационные потенциалы, а все последующие имеют смысл меры стремления ядер удерживать около себя электронное облако. [c.216]

    На внещней электронной оболочке атомы щелочных элементов имеют по одному электрону. На второй снаружи электронной оболочке у атома лития содержатся два электрона, а у атомов остальных щелочных элементов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (табл. 14.2). Образующиеся при этом однозарядные положительные ионы имеют устойчивую электронную структуру соответствующего благородного газа (ион лития — структуру атома гелия, ион натрия — атома неона и т. д.). Легкость отдачи внешних электронов характеризует рассматриваемые элементы как наиболее типичные представители металлов металлические свойства выражены у щелочных элементов особенно резко. [c.382]

    Во внешнем электронном слое атомы щелочных металлов имеют по одному электрону. Во втором снаружи электронном слое у атома лития содержатся два электрона, а у атомов остальных щелочных металлов — по восемь электронов. Имея во внешнем электронном слое только по одному электрону, находящемуся на сравнительно большом удалении от ядра, атомы этих элементов довольно легко отдают этот электрон, т. е. характеризуются низкой энергией ионизации (см. табл. 30). Образующиеся при этом [c.561]

    Особенность строения электронной оболочки атома водорода (как н гелия) не позволяет однозначно решить, в какой группе периодической системы он должен находиться. Действительно, если исходить И числа валентных электронов его атома, то водород должен нахо-д.1ться в I группе, что подтверждается также сходством спектров щ,е-лочных металлов и водорода. Со щелочными металлами сближает водород И его способность давать в растворах гидратированный положительно однозарядный ион Н+ (р). Однако в состоянии свободного иона Н + (г) — протона — он не имеет ничего общего с ионами щелочных мгталлов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов. [c.272]

    Аналогичная последовательность в изменении /1 наблюдается для элементов всех периодов — наименьшую энергию ионизации имеет начинающий период щелочной металл, наибольшую — завершающий период благородный газ. Во вставных декадах энергии ионизации сравнительно мало изменяются при переходе от одного элемента к другому и они выше, чем для металлов главных [c.43]

    Измерение сечений гарпунных реакций подтверждает следствие, вытекающее из простой модели, об увеличении сечения нри уменьшении потенциала ионизации атома щелочного металла. Эта модель предсказывает далее независимость сечения реакции от относительной кинетической энергии молекул. Что касается внутреннего состояния молекулы Х , то оно может влиять па сечение реакции только вследствие зависимости электронного сродства Хз от начального колебательного состояния [53, 160]. [c.139]

    В электрохимическом ряду напряжений металлов все щелочные металлы стоят значительно левее водорода, причем с увеличением атомного номера (и уменьшением потенциала ионизации) электрохимическая активность металлов увеличивается. Исключение составляет литий — расположение на левом фланге электрохимического ряда напряжений металлов обусловлено исключительно высокой энергией гидратации лития, максимальной среди металлов. [c.144]


    Постройте график зависимости первой энергии ионизации атомов щелочных металлов от их порядкового номера. Объясните ход кривой. [c.7]

    Способность элементов образовывать простые ионы обусловлена электронной структурой их атомов. Эту способность можно оценить величиной энергии ионизации и сродства атомов к электрону. Понятно, что легче всего образуют катионы элементы с малой энергией ионизации щелочные и щелочноземельные металлы. Образование же в условиях обычных химических превращений простых катионов других элементов менее вероятно, так как это связано с затратой большой энергии на ионизацию атомов. [c.102]

    Приведенные в табл. 14.2 данные показывают, что в большинстве случаев свойства щелочных металлов закономерно изменяются при переходе от лития к цезию. В основе наблюдающихся закономерностей лежит возрастание массы и радиуса атома в подгруппе сверху вниз. Рост массы приводит к возрастанию плотности. Увеличение радиуса обусловливает ослабление сил притяжения между атомами, что объясняет снижение температур плавления и кипения и уменьшение энергии атомизации металлов, а также уменьшение энергии ионизации атомов при переходе от лития к цезию. Однако стандартные электродные потенциалы щелочных металлов изменяются в ряду Li — s не монотонно. Причина этого, подробно рассмотренная в разделе 11.3.2, заключается в том, что величины электродных потенциалов связаны с несколькими факторами, различно изменяющимися при переходе от одного элемента подгруппы к другому. [c.383]

    Энергия ионизации атома водорода равна 13, 595 эВ, сродство к электрону 0,78 эВ. Сравните эти характеристики водорода с соответствующими характеристиками галогенов и щелочных металлов (см. главу 17) и обсудите целесообразность помещения водорода в VII группу (главную подгруппу) периодической системы химических элементов Д. И. Менделеева, [c.108]

    Атомные радиусы элементов подгруппы меди невелики / (- =128 пм Лд = / д = 144 пм. (Для сравнения укажем радиусы атомов щелочных металлов, находящихся в четвертом, пятом и шестом периодах, как и элементы подгруппы меди Г = 236 пм, Гр.[,==248 пм / 05 = 268 пм. Поэтому медь, серебро и золото имеют высокие значения энергий ионизации. [c.226]

    Атомы всех рассматриваемых элементов в основном состоянии имеют на внешнем уровне по два спаренных х-электрона (табл. 24). В возбужденном состоянии эти внешние электроны находятся в состоянии в котором атомы могут быть двухвалентными. Радиусы атомов элементов главной подгруппы II группы меньше, чегл у атомов соответствующих щелочных металлов (например, радиусы атомов лития и бериллия составляют, соответственно, 0,1586 и 0,1040 нм). По сравнению с соответствующими щелочными металлами, у атомов бериллия, магния и щелочноземельных металлов, энергия ионизации возрастает. Так, первый потенциал ионизации лития составляет 632 кДж/моль атомов, а бериллия— 899 кДж/моль атомов (ср. данные табл. 22 и 24). [c.380]

    У элементов одного и того же периода при переходе от щелочного металла к благородному газу заряд ядра постепенно возрастает, а радиус атома уменьшается. Поэтому энергия ионизации постепенно увеличивается, а восстановительные свойства ослабевают. Иллюстрацией этой закономерности могут служить первые энергии ионизации элементов второго и третьего периодов (табл. 3.4). [c.83]

    Ионизация газа происходит в результате удаления из нейтральных частиц одного или нескольких электронов. Это удаление требует затраты энергии извне на преодоление кулоновых сил притяжения между электроном и положительно заряженным ионом. Энергия, затрачиваемая на ионизацию, различна для разных газов она равна произведению заряда электрона на потенциал ионизации газа и для наиболее слабо связанных с молекулой электронов находится в пределах 4—25 эВ. Легко ионизируются пары щелочных м еталлов (4—5эВ) у паров других металлов энергия ионизации больше (7—8 эВ), у инертных газов она еще больше (15—25эВ). Для удаления у однократно заряженного иона второго электрона требуется весьма большая энергия (около 50 эВ). [c.181]

    Наиболее легко состояние плазмы достигается у веществ, атомы или молекулы которых обладают наиболее низкими потенциалами ионизации. Так, у большинства щелочных металлов ионизация становится заметной уже при 2 500—3 000° С. В настоящее время плазма играет важную роль в некоторых процессах новой техники — в мощных ракетных двигателях, в процессах преобразования энергии нагретого тела в электрическую энергию (в магни-тогидродинамических генераторах), в плазменных горелках, дающих возможность получать температуру 14 ООО—16 000° К, а высокотемпературная плазма — в термоядерных процессах. [c.120]

    В литературе по эмиссии электронов можно найти много примеров, когда этот эффект, несомненно, имеет место [46]. Если в результате хемосорбции кислорода работа выхода у вольфрама сильно возрастет, то на его поверхности будут хемосорбироваться в виде ионов не только атомы щелочных и щелочноземельных металлов, но и атомы металлов, обладающих значительно более высокими энергиями ионизации. Подобные явления имеют место также при воздействии кислорода на поверхности железа, меди и никеля, когда ионы этих металлов при своем движении по поверхности приближаются к хемосорбированным ионам кислорода или располагаются поверх них (раздел УИ, 6), вызывая проникновение хемосорбированного кислорода внутрь поверхностных слоев металла при этом происходит обращение поверхностного потенциала. Цезий, адсорбированный поверх кислорода, хемосорбированного на вольфраме, значительно прочнее связывается с. металлом, чем цезий, хсмосорбированный на чистой поверхности вольфрама. В результате oднoвpeмeнf oй хемосорбции обоих веществ работа выхода падает до такой [c.165]

    В противоположность 1ЮННЫМ ковалентные тетрагидридобораты типа А1(ВН4)з (т. пл. —64,5°С, т. кип. 44,5°С), Ве(ВН4)2 (т. возг. 91"С) летучи, легкоплавки. В этих гидридоборатах (поскольку имеется дефицит электронов) связь между внешней и внутренней сферами осуществляется за счет трехцентровых связей. Таким образом, эти соединения являются смешанными гидридами. В гидридоборатах же щелочных и щелочноземельных металлов (низкие энергии ионизации) дефицит электронов устраняется за счет перехода электронов атома 11еталла к радикалу ВН4, т. е. в этом случае связь между внешней и знутренней сферами становится преимущественно ионной  [c.444]

    Атомы рассматриваемых элементов имеют единственный валентный электрон. По сравнению с элементами других подгрупп у них наиболее низкие первые энергии ионизации, размеры атомов и ионов наибол ьшие. Таким образом, щелочных металлов наиболее сильно выражены металлические признаки. Они проявляют только степень окисления + 1, так как вторая энергия ионизации у этих элементов очень сильно отличается по значению от первой. [c.485]

    Атомы всех щелочных металлов имеют валентную э.ушктронную конфигурацию. 5. Они легко теряют единственный валентный электрон и поэтому обладают низкими энергиями ионизации и низкими электроотрицательностями. Их энергия ионизации и электроотрицательность умень- [c.432]

    Степень ионности связи в НС1 17%, в s l 75%, в Т1С1 29% s l должен иметь наибольшую степень ионности связи, поскольку атомы щелочных металлов обладают очень низкой злектроотрицательностью (а валентный 5-электрон у атома тяжелого элемента группы IA, каковым является С, находится далеко от ядра, вследствие чего его энергия ионизации очень низка) ионный характер связи в этих молекулах повышается по мере уменьшения электроотрицательности атома, присоединенного к С1 хн = 2,20 Хп = 2,04 Хс = 0,79. [c.523]

    Значения первых энергий тзннзации атомов щелочных металлов составляют (эВ) 5,39(Ь1), 5,14 (Ыа), 4,34(К), 4,18(КЬ), 3,89(Сз). Энергии ионизации этих элементов являются наиболее низкими. Это объясняется сильным экранированием заряда ядра электронными слоями, которые предшествуют внешнему электрону. Уменьшение энергии ионизации от лития к цезию обусловлено возрастанием расстояния электрона от ядра по мере увеличения размера атомов. [c.43]

    Щелочные, щелочноземельные металлы, Ве и Мц относятся к наиболее электроположительным, элементам. В соедиисния.х с другими элементами для ме1 ал юв нодгрупны 1А тиинчиа степень окисления +1. а для металлов подгруппы 11.Л 2. С ростом числа электронных слоев и увеличением радиусов энергия иоиизации атомов уменьщается. Вследствие этого химическая активность элементов в подгруппах увеличивается с ростом нх порядкового номера. С малой энергией ионизации связан характерный для них фотоэффект, а также окрашивание их со 1ями пламени газовой горелки. Благодаря легкой отдаче наружных электронов щелочные и щелочноземельные металлы образуют соединеиия преимущественно с ионной связью. [c.127]

    Строение внешних электронных оболочек атомов щелочных металлов пх. Поэтому они имеют низкие энергии ионизации, уменыиаюищеся при переходе по подгруппе элементов сверху вниз. При этом ослабление связн электрона с ядром вызывается ростом радиуса атома (обусловленного увеличением главного квантового числа внешнего электрона) и экранированием заряда ядра предшествующими внешнему электрону оболочками. Поэтому данные элементы легко образуют катионы Э+, имеющие конфигурацию атомов благородного газа. [c.300]

    С галогенами водород связывает гораздо большее число признаков газообразное состояние (при обычных условиях), двух-атомность, ковалентность связи в молекуле Нг, наличие в большинстве соединений полярных связей, например в НС1 в отличие от Na l, неэлектропроводность (как в газообразном, так и в жидком и твердом состояниях), близость энергий ионизации /н и /г. в то время как /м С/н. К перечисленным признакам можно прибавить и другие, в частности сходство гидридов с галогенидами, закономерное изменение свойств в ряду Н — At (рис. 3.77). Можно привести много других примеров линейной взаимосвязи свойств в ряду Нг —Гг, аналогичной показанной на рис. 3.77. В ряду водород — щелочные металлы подобные зависимости обычно не наблюдаются. [c.463]


Смотреть страницы где упоминается термин Щелочные металлы энергия ионизации: [c.400]    [c.133]    [c.141]    [c.434]    [c.434]    [c.589]    [c.312]    [c.40]    [c.117]    [c.221]    [c.42]    [c.263]    [c.587]    [c.143]   
Валентность и строение молекул (1979) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Щелочные металлы, галогениды энергии ионизации центров

Энергия ионизации

Энергия металлов

Энергия щелочных металлов



© 2025 chem21.info Реклама на сайте