Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упаренный раствор

Рис. 70. Выпарные аппараты а — с внутренней нагревательной камерой б — С подвесной нагревательной камерой в — с выносной нагревательной камерой г— пленочного типа д—с принудительной циркуляцией и выносной нагревательной камерой / — пар 2—раствор 3 — соковый пар 4 — конденсат 5 — вторичный пар 6 упаренный раствор. Рис. 70. <a href="/info/93861">Выпарные аппараты</a> а — с <a href="/info/619446">внутренней нагревательной камерой</a> б — С <a href="/info/534814">подвесной нагревательной камерой</a> в — с <a href="/info/93872">выносной нагревательной камерой</a> г— <a href="/info/304716">пленочного типа</a> д—с <a href="/info/148734">принудительной циркуляцией</a> и <a href="/info/93872">выносной нагревательной камерой</a> / — пар 2—раствор 3 — соковый пар 4 — конденсат 5 — вторичный пар 6 упаренный раствор.

    Во внутренние полости тарелок подается греющий пар. Ввод пара и отвод конденсата производятся через торец пустотелого вала. Исходный раствор подается в центральную часть тарелок (на каждую тарелку подводится индивидуальная трубка для подачи раствора). Нижнюю. поверхность тарелок, по которой движется раствор, иногда делают гофрированной для турбулизации потока. Упаренный раствор стекает с периферии тарелок, пары удаляются через верхний штуцер. [c.168]

    Количество упаренного раствора составляет [c.482]

    Второй этап — охлаждение упаренного раствора (точка А) до 0°С. Раствор А при температуре 94 С ненасыщен, при охлаждении состав его не изменяется до момента достижения кривой насыщения в точке В. При дальнейшем охлаждении хлорид калия кристаллизуется и состав раствора изменяется до точки С, которая соответствует раствору, насыщенному хлоридом калия (21% КС1) при 0°С. На изотерме i = 0° (прямая F) находится точка D (состав исходного раствора на втором этапе) и точки, представляющие два комплекса, которые образовались из этого исходного раствора, — твердый хлорид калия F и раствор С. [c.190]

    В целях экономии греющего пара поступающий слабый раствор часто предварительно подогревают за счет тепла упаренного раствора в отдельном теплообменнике. Выгоднее, однако, предварительный подогрев раствора производить в самом выпарном аппарате, предусмотрев в нем добавочную поверхность теплообмена. Аппарат в этих случаях состоит из двух секций — подогревательной и испарительной. [c.120]

    Установка (рис. 21) состоит из емкостей 1 для теплоносителя и 7 для соленых стоков, контактного водяного испарителя 4, трубчатой нагревательной печи 6, водяных насосов 8, насоса 9 для перекачки теплоносителя, отстойника-промывателя 2 и смесителей 5. Стоки ЭЛОУ из емкости 7 насосом 8 подаются в контактный водяной испаритель 4, сюда же поступает нагретый в печи 6 теплоноситель. Струя сточных вод, вытекая из сопла, в зоне контакта водяного испарителя дробится на множество капель, которые, соприкасаясь с нагретым теплоносителем, нагреваются и начинают испарятся. При этом образуется водяной пар, который через отделитель жидкости 3 отводится для нужд завода, а упаренный раствор вместе с теплоносителем поступает в нижнюю часть аппарата, где расслаивается вследствие разности плотностей. Из испарителя 4 теплоноситель поступает в отстойник-промыватель 2, в котором промывается исходными стоками с целью обессоливания и затем насосом 9 подается на нагрев в трубчатую печь 6. Возможен также впрыск соленых стоков непосредственно в лоток теплоносителя перед контактным испарителем. В качестве теплоносителя используется вакуумный газойль, характеристика которого приведена в табл. 4. [c.47]


    Диаметр нижней части аппарата нужно определять скоростью расслоения эмульсии теплоноситель — упаренный раствор, которая при использовании в качестве теплоносителей парафина или газойля характеризуется зависимостью, представленной на рис. 25. [c.51]

    При проектировании новых аппаратов расчет всех величин, входящих в уравнение (45), за исключением величины /С/, не вызывает принципиальных трудностей. Величину / f можно найти, определив частные коэффициенты теплоотдачи от парогазовой смеси к стенке пузырька а и от стенки к упаренному раствору а . Выполненные автором исследования показали, что значение а примерно на три порядка больше значения вн, т. е. /С ав . [c.94]

    Состав исходного упаренного раствора [c.106]

    Исходный раствор из хранилища 1 нагнетается насосом 2 в напорный бак 3 и через измеритель расхода 4 поступает в подогреватель раствора 5. Здесь раствор нагр( вается до кипения и направляется в выпарной аппарат ), где и происходит выпаривание. В нижней части аппарата раствор воспринимает тепло греющего пара, и растворитель испаряется. Образовавшийся вторичный пар и инертные газы освобождаются от брызг жидкости в верхней части выпарного аппарата 6 и поступают в барометрический конденсатор 9. В нем конденсируется вторичный пар, а неконденсирующиеся инертные газы направляются через ловушку 10 к вакуум-насосу. Конденсат вместе с охлаждающей водой удаляется через барометрическую трубу 11. Упаренный раствор перекачивается насосом 7 в сборник готового продукта 8. [c.186]

    ЖИДКОСТИ через аппарат с значительной скоростью, для получения достаточно концентрированного упаренного раствора требуются длинные трубы (обычно 6—9 м). [c.478]

    Для создания таких условий аппарат заполняют при пуске слабым раствором и доводят его концентрацию до конечной путем периодического выпаривания при постоянном уровне (или сразу заполняют аппарат концентрированным раствором), после чего переходят на непрерывную подачу слабого раствора с отводом соответствующего количества упаренного раствора. [c.478]

    Пример 13-3. На выпаривание поступает 01 = 40 000 кг/ч раствора концентрацией Я) = 8 вес. %. Количество выпаренной воды = 18 000 кг/ч. Определить концентрацию и количество упаренного раствора. [c.482]

    Решение. Концентрацию упаренного раствора находим по формуле (13-9)  [c.482]

    Количество упаренного раствора  [c.482]

    При схеме с параллельным питанием (рис. 13-13) слабый раствор подается одновременно во все корпуса, а упаренный раствор отбирается из всех корпусов. Эта схема применяется редко, [c.492]

    С раствором аммиачной се- 1. С упаренным раствором 72 061 [c.444]

    Самопроизвольный переток раствора и вторичного пара в последующие корпуса возможен благодаря общему перепаду давлений, возникающему в результате создания вакуума конденсацией вторичного пара последнего корпуса в барометрическом конденсаторе смешения 7 (где заданное давление поддерживается подачей охлаждающей воды и отсосом неконден-сирующихся газов вакуум-насосом 8). Смесь охлаждающей воды и конденсата выводится из конденсатора при помощи барометрической трубы с гидрозатвором 9. Образующийся в третьем корпусе концентрированный раствор центробежным насосом 10 подается в промежуточную емкость упаренного раствора 11. [c.86]

    Пленочный выпарной аппарат с перемешиванием состоит из трех основных частей. В верхней части происходит отделение вторичных паров, средняя часть (труба) представляет собой собственно выпарной аппарат, а нижняя конусная часть служит сборником упаренного раствора. Внутри аппарата расположен вал с ротором, состоящим из нескольких закрепленных лопастей, которые расположены по всей длине обогреваемой части трубы, обеспечивая неразрывность пленки выпариваемой жидкости. Толщина пленки жидкости, свободно стекающей по нагретой стенке трубы, регулируется путем изменения числа оборотов вала за счет возникающей при этом центробежной силы. Лопасти относительно корпуса аппарата могут быть расположены различно. В основном используются три вида расположения лопастей с фиксированным зазором, с регулируемым зазором и с минимальным зачором (лопасти, скользящие по поверхности корпуса). [c.123]

    Для выпаривания растворов с малыми коэффициентами теплопроводности, разлагающихся при длительном нагревании, фирмой Pfaudler Со. разработан специальный аппарат (рис. 49) [139]. Раствор подается на вращающуюся распределительную тарелку и выбрасывается центробежной силой через сопла (в случае вязких жидкостей через переливные пороги) на внутреннюю стенку выпарного аппарата, снабженного нагревательной рубашкой. Раствор распределяется по поверхности тонкой пленкой. В пазах ротора свободно размещены угольные пластины, которые центробежной силой прижимаются к поверхности нагрева и непрерывно снимают концентрированную жидкость, ограничивая время ее контакта с горячей стенкой. Это время зависит от скорости вращения ротора. Упаренный раствор попадает в сборник готового продукта и выводится из аппарата. Вторичный пар проходит через сепаратор, делая два поворота на 180° и конденсируется на U-o6- [c.124]


    Используемый для извлечения соли упаренный раствор стоков Надворнянского НПЗ характеризовался следующими величинами  [c.88]

    Пример. При упаривании в АПГ стоков ЭЛОУ Надворнянского НПЗ (тепловая мощность аппарата составляла 39,4 кВт, коэффициент избытка воздуха был равен 1,2) экспериментально было установлено, что, начиная с глубины погружения устья жаровой трубы горелки И >0,2 м, разность температур между парогазовой смесью, выходящей из аппарата, и упаренным раствором практически остается постоянной. Иными словами, в данном случае Н = 0,2 м является минимально необходимой глубиной погружения для обеспечения процесса теплообмена. При этом отношение действительных объемов парогазовой смеси на входе и выходе из аппарата составляет 1,94, т. е. диаметр одиночного пузырька парогазовой смеси за время пребывания в зоне контакта уменьшается в 1,25 раза. Скорость парогазовой смеси, отнесенная к полному поперечному сечению циркуляционной трубы, на входе = = 5,14 м/с, на выходе = 3,2 м/с, средняя скорость и = , 7 м/с. Средний логарифмический напор в аппарате 0 = 254 С, величина коэффициента теплопередачи, отнесенная к объему зоны контакта, = 33,3 кВт/м °С. [c.94]

    Для определения (115) содержания нолиэтиленгликолей 25 г исследуемого вещества и 50 мл насыщенного при комнатной температуре раствора хлористого натрия помещают в делительную воронку емкостью 125 мл. Воронку до горлышка погружают в кипящую водяную баню и выдерживают там, пока раствор не нагреется до 95— 100° С. Затем раствор перемешивают и оставляют в водяной бане на 10—15 мин, чтобы произошло разделение фаз. Отделяют нижний, содержащий хлористый натрпй слой. Вновь наливают в воронку 50 мл свежего раствора хлорида натрия и еще дважды повторяют описанную операцию. Для выделения нолиэтиленгликолей упаривают на водяной бане раствор хлористого натрия от трех экстракций. Из упаренного раствора в аппарате Сокслета изопропиловым спиртом экстрагируют полиэтиленгликолсвые эфиры. Затем изопропиловый спирт отгоняют, а остаток высушивают до постоянной массы и взвешггвают. Таким образом можно определить содержание полиэтиленгликолевых эфиров. [c.186]

    Предварительно упаренный раствор N82804 с начальной влажностью 70—75% подают в сушильную камеру 1 двумя форсунками 2. Сушку проводят с использованием дымовых газов, поступающих в нижнюю подрешеточную зону с температурой 750 °С. В средней части сушилки установлена перфорированная решетка 4, на которой в процессе сушки образуется кипящий слой 3. Сочетание сушки в распыленном состоянии и дополнительное обезвоживание в кипящем слое при наличии противоточного режима движения теплоносителя позволяет достичь низкой конечной влажности продукта (<0,1 %). Высушенный сульфат натрия с температурой 150°С самотеком выгружается через течку, расположенную в нижней части кипящего слоя. Топочные газы с температурой 150 °С, содержащие пылевидные фракции соли, выходят через штуцер. Отделение пыли от газового потока проводят в циклоне и [c.240]

    Регулирование процесса выпаривания в пленочных выпарных аппаратах очень затруднительно даже при незначительных колебаниях давления греющего пара и начальной концентрации раствора. При нарушении нормального течения процесса переходят на работу с рециркуляцией раствора. В этом случае часть упаренного раствора по циркуляционной трубе 4 напрапля тся вновь на выпаривание. [c.243]

    Больщей частью из раствора удаляют лищь часть растворителя, так как в выпарных аппаратах обычных конструкций упаренный раствор должен оставаться в текучем состоянии. Полное удаление растворителя в таких аппаратах возможно в тех случаях, когда растворенное вещество либо является жидким (например, выпаривание растворов глицерина), либо при температуре процесса находится в расплавленном состоянии (например, выпаривание растворов аммиачной селитры или едкого натра). Полное удаление растворит ёля из раствора возможно также в некоторых аппаратах специальной конструкциии, например в распылительных сушилках (стр. 772). [c.467]

    Циркуляция жидкости производится пропеллерным или центробежным насосом 2. Свежий раствор подается в нижнюю часть кипятильника, а упаренный раствор отводится из нижней части сепаратора. Уровень жидкости поддерживается несколько ниже верхнего обреза кипятильных труб. Поскольку вся циркуляционная система почти полностью заполнена жидкостью, работа насоса. затрачивается не на подъем жидкости, а лишь на преодоление гидравлических сопротивлений. Давление внизу кипятильных труб больше, чем вверху, на величину давления столба жидкости в трубах плюс их гидравлическое сопротивление. Ввиду этого на большей части высоты кипятильных труб жидкость не кипит, а перегре-Упаремный вается по сравнению с температурой кипения, соответствующей давлению в сепараторе. Закипание происходит только на небольшом участке верхней части трубы. Количество перекачиваемой насосом жидкости во много раз превышает количество испаряемой воды поэтому отношение массы жидкости к массе пара в парожидкостной смеси, выходящей из кипятильных труб, очень велико. [c.476]

    Понижение уровня раствора часто нарушает работу аппарата, поэтому описанный способ проведения процесса обычно видоизменяют следующим образом начиная с момента закип ания раствора, в аппарат непрерывно подают слабый раствор в таком количестве, чтобы уровень раствора не изменялся. При этом способе работы (выпаривание при постоянном уровне) получаемый в конце операции упаренный раствор занимает тот же объем, что и первоначально залитый в аппарат слабый раствор. [c.478]

    Рассматривая поступа1ощий раствор как смесь упаренного раствора и испаренной воды, можно написать  [c.483]

    Расход тепла с упаренным раствором аммиачной селптры < = (1430-313) 0,475 [c.440]

    Упаренный раствор глицерина переносят в капельную воронку, откуда он медленно по каплям вводится в нагреваемую коническую колбу 1. После введеиия в колбу всего раствора нагревание продолжают 30 мин. В колбе протекает следующая реакция  [c.743]


Смотреть страницы где упоминается термин Упаренный раствор: [c.86]    [c.94]    [c.137]    [c.194]    [c.194]    [c.201]    [c.201]    [c.233]    [c.48]    [c.48]    [c.90]    [c.108]    [c.187]    [c.242]    [c.479]    [c.482]    [c.441]    [c.443]    [c.444]    [c.75]   
Смотреть главы в:

Химико-технический контроль лесохимических производств -> Упаренный раствор




ПОИСК







© 2024 chem21.info Реклама на сайте