Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Однородность состава исходной смеси

    В энергетических или технологических процессах, связанных с использованием газообразного топлива, существенным является то обстоятельство, что они протекают в газовой фазе, поскольку окислитель (кислород, воздух либо кислородсодержащие смеси) также находится в газообразном состоянии. Топливо и окислитель могут смешиваться либо непосредственно в устройстве, в котором протекает процесс (горелке, сопловой насадке, реакторе), либо заранее, образуя предварительно перемешанную однородную гомогенную смесь. Если в такой смеси инициировать сложный химический процесс, то его характеристики уже не будут зависеть от условий смешения. В тех случаях, когда процесс протекает так быстро, что его характерные времена много меньше характерных времен масс,-теплообмена с окружающей средой, он целиком определяется лишь свойствами исходной смеси. Если при этом не возникает пространственных концентрационных неоднородностей, т. е. в ходе процесса состав реагирующей системы в любой точке реакционного пространства остается однородным (за счет, например, интенсивного перемешивания или циркуляции), то все характеристики процесса являются функциями только времени, а не координат (так называемая сосредоточенная постановка задачи). [c.11]


    Из изложенного следует, что гомогенизация системы за счет исчезновения насыщенного раствора, богатого Б, произойдет во всех случаях, когда исходная смесь имеет состав, лежащий между и М. Если же точка системы лежит между М и Ж, то система из двухфазной превратится в однофазную в результате исчезновения раствора, богатого А. Наконец, смесь состава М при прибавлении к ней компонента Б станет однородной не за счет исчезновения одной из фаз, а вследствие отождествления их составов (в точке К)- [c.185]

    Очевидно, обратные явления имеют место в процессах конденсации, сопровождающихся понижением температуры и прогрессивным обогащением остаточного пара компонентом, играющим роль низкокипящего. При этом важно отметить, что для рассматриваемого класса однородных в жидкой фазе азеотропов путем постепенной или многократной конденсации можно добиться получения практически чистых компонентов системы, если ее исходный состав а отличен от азеотропического. В ходе же испарения конечным продуктом является азеотропическая смесь которая теоретически может быть получена лишь с последней кап-лей перегоняемой жидкости. [c.66]

    Однородный расплав А + В (любая точка однофазной области) можно рассматривать как ненасыщенный раствор компонентов (А в В или В в А). Так, например, в точке Ь жидкая фаза состоит из 20% В и 80% А и является ненасыщенным раствором компонента А в компоненте В. При охлаждении этого расплава (по вертикали) до температуры /г обнаруживается выделение кристаллов компонента А. При этой температуре раствор становится насыщенным относительно металла А. Поскольку в процессе кристаллизации компонент А выделяется из расплава, жидкая фаза обогащается компонентом В в соответствии с кривой ликвидуса. Одновременно снижается температура кристаллизации. Все это происходит то тех пор, пока состав расплава и температура кристаллизации не достигнут минимума а на кривой ликвидуса. Расплав такого состава (эвтектический состав) насыщен и по компоненту А, и по компоненту В и поэтому затвердевает полностью. Температура 1, при которой происходит затвердевание, называется эвтектической точкой. Это самая низкая температура, при которой еще может существовать жидкая смесь А + В. Сплав, содержащий 15% А и 85% В, называют эвтектическим, он представляет собой механическую смесь кристаллитов металлов А и В. При микроскопическом анализе такого сплава оба металла видны в форме хорошо различимых пластинок или слоев. Если в исходной жидкой фазе содержание компонента А более 15%, под микроскопом видны отдельные кристаллы А, которые выделяются при затвердевании первыми, окруженные кристаллизующейся позже эвтектикой. Если же содержание А в исходной жидкости менее 15 %, то в массе эвтектики видны первичные кристаллы В. [c.275]


    Следует также отметить, что поскольку в ходе кристаллизации при разных температурах из расплава выпадают кристаллы твердого раствора разного состава (например, при / состава с, при t2 состава С1 и т. д.), может создаться впечатление, что полностью затвердевший расплав должен представлять собой смесь кристаллов твердого раствора разного состава. Однако при равновесных условиях (а диаграммы состояния выражают только равновесные состояния вещества) этого не произойдет. Окончательно затвердевший расплав будет состоять только из одних однородных кристаллов твердого раствора состава С2, совпадающего с составом исходного расплава. Это произойдет именно потому, что точки кривой солидуса выражают такое состояние системы, когда равновесие уже установилось, а это предполагает, что процесс диффузии прошел до конца. Поскольку на кривой солидуса данной температуре соответствует в равновесных условиях только один какой-то определенный состав твердого раствора, ранее выпавшие кристаллы другого состава должны исчезнуть в результате диффузии произойдет перераспределение вещества между жидкостью и ранее выпавшими кристаллами и образуются только кристаллы состава, определяемого соответствующей температурой. Поскольку процесс диффузии протекает сравнительно медленно, в реальных условиях при достаточно быстром охлаждении он не всегда успевает пройти до конца. Поэтому в природе [c.231]

    Рассмотрим для простоты крайний случай реакционную смесь пропускают через реактор с такой скоростью, чтобы весь процесс до требуемой конверсии осуществлялся в одном единственном аппарате. Состав смеси при идеальном перемешивании должен быть однородным по всему объему реактора, в том числе и при выходе из него, а продолжительность пребывания отдельных микроэлементов ее объема в реакторе должна иметь статистическое распределение некоторые из этих элементов быстро проскакивают через реактор, а другие остаются в нем значительно дольше, чем при периодическом оформлении процесса. Очевидно, что и проскок исходных веществ, и задержка продуктов реакции должны приводить к увеличению сум-марной продолжительности реакции. Естественно также, что при переходе от одного реактора непрерывного действия к нескольким указанные эффекты должны ослабевать. [c.165]

    После тщательного перемешивания компонентов смесь прессуют в формах или продавливают через специальный мундштук под большим давлением. Отформованные таким образом изделия подвергают сушке и специальному обжигу, в результате которого из кремния и углерода образуется так называемый вторичный карбид кремния, связывающий исходные материалы в однородное и монолитное тело, состоящее из кристаллов карбида кремния. При этом обжиге происходит также и рекристаллизация первичного карбида кремния. Как состав смеси, из которой формуют нагревательные элементы, так и технология производства их могут быть различными, однако во всех случаях должно происходить образование вторичного карбида кремния, который, цементируя зерна первичного карбида кремния, превращал бы изделие в прочное однородное тело. [c.167]

    Если однородная смесь состава /, фазовая диаграмма которой представлена на рис. 4, подвергается зонной очистке, то первый затвердевший слой будет содержать более высокую концентрацию компонента В, чем жидкость, и в жидкости, таким образом, уменьшается содержание этого компонента. Этот процесс продолжается до тех пор, пока состав жидкости не приблизится к V. Тогда состав затвердевшего слоя становится очень близким к исходному составу. Затвердевший слой в последней зоне содержит меньше В, чем исходный образец. Повторные зонные проходы обусловливают концентрирование компонента В вблизи конца, где зона начинает свое перемещение. [c.23]

    Индулинами называются красители темно-синего цвета, получаемые путем длительного нагревания при 150—200° аминоазобензол а с анилином и солянокислым анилином. Такой процесс получил название индулиновой плавки. Индулины, в отличие от описанных выше красителей, не являются однородным продуктом, а представляют собой смесь соединений, обладающих различным количеством аминогрупп, в свою очередь в различной степени фенилированных. Соотношение между этими соединениями непостоянно. Оно определяется как продолжительностью и температурой плавки, так и соотношением исходных веществ. Благодаря сильной неоднородности индулинов, представляющих смесь близких по свойствам продуктов различного состава, изучение их представляет собой весьма трудную задачу. В частности, индулинам не удается приписать какую-либо одну формулу и указать их элементарный состав. [c.170]

    Установлено, что при увеличении молекулярной массы углеводородного радикала краевой угол смачивания ПВХ глицерином практически не изменяется. Смачиваемость убывает в ряду Na>Mg>Al. В соответствии с этим ПАВ в зависимости от валентности катиона оказывает различное влияние на характер структурообразования при получении покрытий. Структура покрытий из дисперсий ПВХ неоднородна и состоит из глобул различного размера. Это говорит о том, что частицы дисперсии не разрушаются полностью на исходные структурные элементы даже при значительном содержании пластификатора в системе и воздействии высокой температуры. Введение натриевой соли СЖК ряда Сю— i6 способствует дополнительной агрегации структурных элементов, а модифицирование дисперсии магниевой солью СЖК — диспергированию структурных элементов и формированию однородной структуры при этом размер структурных элементов зависит от длины углеводородного радикала и уменьшается с его увеличением. При введении ПАВ внутренние напряжения в системе уменьшаются, и тем больше, чем длиннее углеводородный радикал СЖК. Введение СЖК позволяет значительно улучшить свойства наполненных покрытий путем регулирования условий структурообразования. Большинство минеральных наполнителей и пигментов, вводимых обычно в состав пленок ПВХ, более гидрофильно, чем ПВХ. Смесь мела и диоксида титана (в соотношении 4 1), введенная в состав ПВХ, оказывает влияние на свойства покрытий и пленок подобно неактивным наполнителям. С увеличением концентрации наполнителей уменьшаются прочность при разрыве, относительное удлинение при разрыве и внутренние напряжения в результате [c.91]


    В иастояш,ее время для разделения углеводородов Сх— Сд используются также и пористые стекла [127, 128], которые относительно легко можно получить более однороднонори-стыми, чем силикагели и алюмогели. Кроме того, пористой структурой стёкол и глубиной пористого слоя можно легко управлять, изменяя химический состав исходного стекла и условия его тер-м. обработки и выщелачивания [129]. Благодаря большей однородности пор в случае применения пористых стекол элюируемые полосы размываются в меньшей степени. Большая селективность и адсорбционная емкость пористых стекол создают особенно благоприятные условия для анализа микропримесей в чистых веществах. Известно [130], что оптимальное соотношение концентраций соседних компонентов для хроматографического разделения равно единице. Когда используется смесь компонентов с соотношением концентраций ниже 1 1000 (т. е. нри определении микро-примесей), требования к разделительной способности колонки повышаются. На рис. 92 показано хорошее хроматографическое разделение на пористом стекле малых примесей (0,02% СН4 и 0,03% СаНб), присутствующих в этилене (смесь из производства полиэтилена). Благодаря большой селективности пористое стекло может быть использовано также для проведения быстрых анализов на коротких колонках (рис. 93). [c.159]

    Процесс коагуляции происходит за 10—12 сек. За это время капельки раствора успевают пройти слой масла толпщпой 2,5—3 ж и попадают в водный слой в виде упругих шариков. Однородный химический состав катализатора можно получить лишь при строгом регулировании соотношения исходных гелеобразуюищх растворов. Это соотношение контролируется по pH смеси. Разбрызгивание смеси производится смесителями-распылителями в виде сопла. Размер капелек регулируется соотношением подачи в сопло раствора и воздуха. Естественно, что для канелек различного размера требуется масло с различной вязкостью. Более мелкие капельки проходят слой масла с меньшей скоростью и в этом случае применяют смесь масла с керосином для понижения вязкости среды. [c.233]

    Отметим два наиболее важных свойства однородной системы. Первым из них является превращение одиночного исходного вещества в сложную смесь многих веществ. По 1 олпчеству компонентов смесь тем слож ей, чем больше реа <ций в системе. При / = 1 смесь состоит из 5 компонентов, есл 1 содержание нх определять с точностью до 1%, тогда как при / = 10 в состав смеси ВХОД уже 16 продуктов, а прп / = 20 ч сло их возрастает до 23. [c.17]


Смотреть страницы где упоминается термин Однородность состава исходной смеси: [c.110]   
Научные основы химической технологии (1970) -- [ c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Состаи смеси



© 2025 chem21.info Реклама на сайте