Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтетическое волокно на основе поливинилового спирта

    Возникновение конденсационных структур составляет сущность процессов застудневания растворов различных природных и синтетических высокомолекулярных соединений. Оно может сопровождаться изменением конформационного состояния макромолекул (застудневание желатины и других биополимеров) или химическими взаимодействиями. Например, при частичном ацеталировании поливинилового спирта формальдегидом (в кислой среде) в условиях пересыщений выделяются и срастаются волокна поливинилформалей, развивающаяся при этом сетчатая структура по свойствам близка к коже и х)ставляет основу синтетического материала — искусственной кожи. [c.385]


    Синтетические полимерные носители. Благодаря разнообразию и доступности материалы этой группы широко используются как носители для иммобилизации. К ним относятся полимеры на основе стирола, акриловой кислоты, поливинилового спирта полиамидные и полиуретановые полимеры. Большинство синтетических полимерных носителей обладают механической прочностью, а при образовании обеспечивают возможность варьирования в широких пределах величины пор, введения различных функциональных групп. Некоторые синтетические полимеры могут быть произведены в различных физических формах (трубы, волокна, гранулы). Все эти свойства полезны для разных способов иммобилизации ферментов. [c.87]

    Виниловый спирт в свободном состоянии не существует. Однако его полимер — поливиниловый спирт, — получаемый, например, омылением поливинилацетата (полимера винилацетата), известен. Это белый растворимый в воде порошок. На его основе получают синтетическое волокно винол и лекарственные препараты (С. Н. Ушаков). [c.122]

    В литературе описано много примеров синтеза привитых и блоксополимеров на основе винилхлорида, для получения которых использованы практически все известные методы. Применение привитой сополимеризации для модификации ПВХ позволило придать материалам на его основе ряд новых свойств повысить теплостойкость, эластичность, ударопрочность изделий, стойкость к растворителям и другим химическим агентам и т. п. Например, прививка акрилонитрила придает жесткому ПВХ повышенную теплостойкость и улучшает физико-механические характеристики. Химическое совмещение ПВХ с поливиниловым спиртом или карбоксилсодержащими полимерами дает возможность получать гидрофильные волокна с хорошей накрашиваемостью. Привитые сополимеры на основе поливинилхлорида и полиакрилатов, полиолефинов или синтетических каучуков обладают высокой эластичностью и стойкостью к динамическим нагрузкам. Прививка ненасыщенных низкомолекулярных полиэфиров позволяет повысить прочность изделий из мягкого поливинилхлорида и уменьшить миграцию из них пластификаторов. [c.371]

    Обширный класс высокопористых углеродных материалов составляют материалы на основе углеродных, в том числе графитовых, волокон (войлок, фетр, пряжа и т. п.). Эти материалы используют в качестве высокотемпературной изоляции, химически стойких прокладок и фильтров для очистки агрессивных горячих газов и жидкостей, а также для изготовления деталей с низкими поверхностными трением и износом в атомной и аэрокосмической промышленности и при создании конструкций сложной формы. Сырьем для получения этих материалов служат натуральные и синтетические волокна (шерсть, шелк, полиэфиры, полиакрилонитрил, вискоза) и войлок или фетр на их основе, карбонизованные при 900—1200°С для увеличения их прочности на разрыв и содержания углерода. В качестве связующих применяют крахмал, поливиниловый спирт и различные смолы. Иногда для получения изделий заданной формы и размеров и придания им необходимой прочности в качестве [c.131]


    Аналогичные не растворимые в воде аппреты на основе синтетических смол — полиакрилатов поливиниловых эфиров и растворимых в неводных средах мочевино-формальдегидных смол — также применяются в виде водных дисперсий. Их стабилизация осуществляется при помощи сульфоэтерифицированных жирных эфиров и спиртов и неионогенных веществ типа полиоксиэтиленовых эфиров. Катионактивные вещества также, повидимому, улучшают условия отложения и прилипания к волокну частиц смолы [90]. [c.432]

    Основные научные работы относятся к химии и технологии химических волокон. Исследовал процессы полимеризации винилацетата и омыления поливинилацетата до поливинилового спирта. Изучал технологию, способы получения свойства химических волокон на основе поливинилового спирта получил (1939) волокно виналон . Предложил способы крашения синтетических волокон. [c.305]

    Мапгуо— синтетическое волокно па основе поливинилового спирта. [c.138]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]

    В качестве сырья для этих изделий используют высокопрочные и инертные синтетические волокна и нити — фторуглеродные, полиэфирные, полипропиленовые, углеродные. Перспективны также волокна на основе биополимеров, скорость разложения которых в организме поддается регулированию, например, коллагена. Имплантаты из таких волокон выполняют функцию временного направляющего каркаса для регенерации тканей организма. Перспективны так называемые полурассасываю-щиеся протезы кровеносных сосудов, изготовляемые из полиэфирных нитей и коллагена. Разрабатывают искусственные сосуды из антимикробных волокон на основе производных поливинилового спирта и их смесей с полиэфирными и фторуглерод-ными. Несмотря на большой выбор сосудистых протезов, проблема создания высокофункционального искусственного сосуда еще не решена. [c.313]

    Известны также синтетические волокна на основе полимера нитрила акриловой кислоты (нитрон), поливинилхлорида и сополимеров винилхлорида (хлорин, сови-ден), поливинилового спирта (винол), полиэтилена и полипропилена, политетрафторэтилена, полиформальдегида и других полимеров. [c.243]

    Синтетические волокна с ценными техническими свойствами капрон, анид (найлон), энант, лавсан и др.— получают из синтетических гетероцепных полимеров полиамидов, полиэфиров, полиуретанов. На основе карбоцепных полимеров по-лиакрилонитрила, политетро-фторэтилена, поливинилового спирта, полипропилена, а также различных сополимеров — изготовляют волокна нитрон, тефлон, винол и т. п. Исходные полимеры синтезируют из простых низкомолекулярных веществ фенола, бензола, п-ксилола, этилена, пропилена, формальдегида, аммиака. [c.298]


    Для улучшения смачивания волокон и повышения устойчивости суспензии применяют вещества, способствующие гидрофилизации поверхности, понижающие поверхностное натяжение на границе раздела фаз волокно — жидкая среда или повышающие вязкость и плотность дисперсионной среды. Для гидрофилизации волокон рекомендуют использовать желатин, эфиры целлюлозы, камеди, подкисленный раствор натриевой соли стиролмалеиновой кислоты и другие неионогенные и ионогенные поверхностно-активные вещества (сульфанол НП-1, алка-мон Д, ОП-7, ОП-10) [201]. Обычно эти вещества вводят в количестве 0,1—5 % от массы волокна. Возможна и химическая прививка к поверхности волокон мономеров с гидрофильными группами. Из добавок, повышающих вязкость суспензий, рекомендуют карбоксиметилцеллюлозу, метилцеллюлозу, природные и синтетические полиэлектролиты. Эффект увеличения устойчивости суспензий в данном случае достигается за счет снижения скоростей агрегации и седиментации волокон в вязкой среде. Существует группа волокон на основе гидрофильных полимеров — поливинилового спирта, полиоксиэтилена, эфиров целлюлозы (метил- и этилцеллюлозы и оксиэтилцеллю-лозы) и др. Эти волокна относительно легко диспергируются в воде. [c.117]

    Особенно большое значение приобрели в промышленности пластических масс, синтетического волокна (винилон), лаков и склеивающих средств сложные виниловые эфиры (ноливинилацетат и поливиниловый спирт), получающиеся из ацетилена и уксусной кислоты в присутствии катализаторов М. Г. Кучерова (сулема, сернокислая ртуть, соли цинка и кадмия). В наше время разработаны ироизводственные синтезы простых ] иниловых эфиров и их полимеров на основе реакций А. М. Бутлерова, Л. П. Эльтекова и А. Е. Фаворского. [c.11]


Смотреть страницы где упоминается термин Синтетическое волокно на основе поливинилового спирта: [c.425]    [c.10]   
Смотреть главы в:

Поливиниловый спирт и его производные Том 2 -> Синтетическое волокно на основе поливинилового спирта




ПОИСК





Смотрите так же термины и статьи:

Волокна на основе

Волокна на основе поливинилового спирта

Поливиниловый спирт

Синтетические волокна



© 2025 chem21.info Реклама на сайте