Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Примеры применения метода ионного обмена

    Реакция обратима, и в зависимости от исходных веществ, условий ее проведения и стехиометрических соотношений реагентов устанавливается определенное состояние равновесия. Полученную смесь эфиров и спиртов обычно разделяют перегонкой. Фактором, катализирующим обмен, может явиться минеральная кислота примером применения такой добавки может служить превращение жиров в метиловые эфиры жирных кислот , а также получение бутилового эфира олеиновой кислоты Эту реакцию катализируют также ионы ОН . При добавлении небольшого количества едкого натра к спиртовому раствору сложного эфира реакция алкоголиза значительно ускоряется. Подобным же образом действуют алкоголяты, образующиеся в спиртовом растворе сложного эфира при введении в него небольших количеств металлического натрия . Путем алкоголиза можно получить такие эфиры, получение которых другими методами затруднительно ввиду малой стойкости кислоты, например изобутиловый эфир ацетоуксусной кислоты . [c.357]


    Ионный обмен применяется для выделения небольших количеств электролита из больших объемов раствора либо с целью концентрировать растворенные элементы, либо с целью очистить растворы. Примером может служить выделение плутония из разбавленных растворов, получаемых в процессе экстракционной очистки (см. раздел 10.7). Чаще всего метод ионного обмена используется для извлечения ионных примесей из воды, например с целью ее смягчения или деминерализации. Но этот случай по своему техническому оформлению выходит за рамки радиохимии (в разделе 15.2 рассматривается применение ионного обмена для очистки воды в атомных реакторах). [c.43]

    Методы, применяемые для очистки сточных вод от загрязнений, можно разделить на две группы методы предварительной, или грубой, очистки вод от основной массы загрязнений и методы доочистки, или тонкой очистки, стоков, содержащих малое количество загрязнений. К первой группе относятся нейтрализация, осаждение, коагуляция и флокуляция, экстракция, ректификация, выпаривание, сжигание. Ко второй группе относятся сорбция на твердых сорбентах, ионный обмен, электрохимическое и биохимическое окисление, озонирование, биологическая очистка, мембранные методы — обратный осмос и ультрафильтрация. Биологический метод очистки сточных вод является общим методом доочистки на общезаводских очистных сооружениях и поэтому не включается в систему локального обезвреживания стоков. Рассмотрим применение некоторых методов очистки сточных вод на конкретных примерах [50]. [c.205]

    Прекрасным примером применения метода дифракции рентгеновских лучей для минералогического исследования является идентификация глин, особенно при использовании вспомогательных методов, таких как ионный обмен, химический, физический и термический анализы [4]. [c.249]

    Введение меченых атомов в химическое соединение, конечно, не вызывает у этого соединения новой способности обменивать атомы (или ионы). Если изотопный обмен наблюдается в данных условиях, то это означает, что молекулы данного вешества вообще могут в этих условиях обмениваться атомами (или ионами) данного элемента с окружающей средой. Введение меченых атомов лишь создает возможность обнаружить такую способность у исследуемых веществ и изучить процесс обмена, измерить его скорость и т. д., следовательно, изучить и количественно характеризовать подвижность атомов данного элемента в разных веществах. Так, в приведенном выше примере обмена атомами кислорода между солями натрия и водой обмен происходит в одинаковой степени независимо от введения нами молекул воды, содержащих изотоп кислорода О . Применение метода меченых атомов на том и основано, что замена одного изотопа другим не изменяет существенно условий и результата химического взаимодействия. [c.469]


    Метод ионообменной хроматографии в настоящее время широко используется для получения чистых препаратов редкоземельных элементов (РЗЭ) [1—4]. Известно большое число различных методик хроматографического разделения смесей РЗЭ, но многие из них носят эмпирический характер. Наряду с этим в литературе имеется ряд сообщений, посвященных выбору условий хроматографического разделения смесей. Мейер и Тонкине [5] использовали теорию тарелок для описания процесса элюирования РЗЭ раствором лимонной кислоты теоретические кривые вымывания совпали с опытными. Метод расчета применим также для определения чистоты РЗЭ, разделяемых при помощи процесса элюирования. Корниш [6], используя выражение, данное Глюкауфом для высоты, эквивалентной теоретической тарелке (ВЭТТ), применил теорию тарелок для предсказания условий разделения смесей ряда элементов. В работах Масловой, Назарова и Чмутова [7,8] была рассчитана величина ВЭТТ для процесса вымывания церия раствором молочной кислоты, что дало возможность произвести расчет кривой элюирования и установить условия получения элемента с заданной степенью чистоты. В работе тех же авторов [8] на примере разделения церия и прометия молочной и пирофосфорной кислотами был проведен расчет процесса градиентного элюирования РЗЭ, с использованием теории Фрейлинга. Расчет удовлетворительно совпадает с экспериментальными данными. В работах Еловича и сотр. [9—12] получено выражение для расчета процесса разделения близких по свойствам элементов. На примере разделения трансурановых элементов при помощи ЭДТА показано решающее значение комплексообразования по сравнению с обычным ионным обменом. В работах Материной, Сафоновой и Чмутова[13] рассмотрена возможность применения фронтального анализа в ионообменной комплексообразовательной хроматографии. Авторы изучали процесс комплексообразования в зависимости от pH среды. Маторина [14] изучила зависимость равновесного коэффициента разделения от pH [c.170]

    В настоящее время все более широкое применение приобретают спектральные методы определения следов элементов в веществах высокой чистоты с предварительным обогащением химическим путем [1, 2]. Это связано с тем, что содержание примесей в высокочистых веществах обычно в 10—1000 раз ниже относительного предела обнаружения большинства прямых спектральных методов (для галлия он равен 1"10 %). Относительный предел спектрального обнаружевия можно уменьшить 1) увеличением яркости линии в разряде 2) увеличением коэффициента обогащения 3) повышением воспроизводимости определений. Первый и третий пути могут быть использованы только за счет усложнения техники анализа и отсюда большей трудоемкости определений. В качестве примеров можно привести метод полого катода [1, 3] и плазменный разряд различных видов [1,3] в результате предел обнаружения многих элементов был доведен до 10 —10 %. В работах с использованием второго направления для определения следов галлия применялись соосаждение [4], дистилляция [51, ионный обмен [6], экстракционная хроматография [7], экстракция [8] и другие методы [1]. [c.38]

    В кинетически инертных комплексах скорость обмена лигандов крайне мала. Один из примеров практического применения лигандной сорбции с целью получения на природных полимерах инертных комплексов известен очень давно—это процесс крашения комплексообразующими красителями протравленных ионами металла (Сг +, волокон. Такие окраски из-за инертности комплексов отличаются большой прочностью [17]. В хроматографическом режиме обмен лигандов в кинетически инертных комплексах, естественно, невозможен. Однако на-м представляется исключительно интересным использование об М 0Н1а лигандов второй, внешней координационной сферы кинетически инертных комплексов. Как будет показано ниже, многие хроматографические процессы с участием кинетически инертных комплексов Со и Сг + могут быть интерпретированы как внешнесфер-ный лигандный обмен. Закономерности обмена лигандов внешней координационной сферы на сегодняшний день практически не изучены. Нам кажется, что в решении этой задачи ведущую роль может сыграть лигандообменная хроматография как метод исследования координационных соединений [c.9]


Смотреть страницы где упоминается термин Примеры применения метода ионного обмена: [c.252]    [c.360]    [c.13]   
Смотреть главы в:

Очистка сточных вод в химической промышленности -> Примеры применения метода ионного обмена




ПОИСК





Смотрите так же термины и статьи:

Ионная примеры

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Примеры применения

РО-ионов методом ионного обмена



© 2025 chem21.info Реклама на сайте