Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

обмен основно-катализируемый С обмен

    Обмен галактозы. Основным источником галактозы является лактоза пиши, которая в пищеварительном тракте расщепляется до галактозы и глюкозы. Обмен галактозы начинается с превращения ее в галактозо-1-фосфат. Эта реакция катализируется галактокиназОй. Известно, что галактокиназа печени плода и ребенка характеризуется и примерно в 5 раз выше, чем у взрослого. Последующие превращения галактозо-1-фосфата могут происходить двумя путями. [c.180]


    Таким образом, взаимопревращение метаболитов, образующихся при катаболизме веществ разных классов, тесно связано с энергетическим обменом. Известно, что одним из энергоемких процессов в организме является биосинтез белка, и становится понятна в этом отношении интеграция этого процесса с катаболическими реакциями превращения глюкозы и триацилглицерола — основными источниками синтеза АТФ в процессе окислительного фосфорилирования. В свою очередь, все реакции углеводного и липидного обмена катализируются ферментами, являющимися белками. Следует отметить, что единство метаболических процессов находится под воздействием условий внешней среды и способность живых организмов сохранять постоянство внутренней среды — биохимический гомеостаз — при помощи механизмов саморегуляции является одним из важнейших свойств всех живых систем. [c.449]

    Если применять тяжелую воду, то очень быстро обменивается водород в связях О—Н, N—Н, S—И, Hal—Н, но обычно не удается осуществить обмен в связях С—Н, наиболее перспективный для решения многих вопросов теоретической органической химии. Легко заметить, что обмен водорода на дейтерий тяжелой воды происходит лишь в связях С—Н тех веществ, которые в водном растворе представляют собой слабые кислоты или слабые основания, причем обмен катализируют сильные основания и кислоты. Ингольду [14] удалось заменить водород в некоторых углеводородах на дейтерий, действуя на них дейтеросерной кислотой. Эти факты навели на мысль о кислотно-основной природе водородного обмена в растворах, из которой следовало, что если усилить кислотные или основные свойства углеводородов и их производных, применяя соответствующие растворители и катализаторы, то водородный обмен в СН-связях станет обычным явлением [15]. Знание закономерностей кислотно-основного равновесия и катализа в неводных растворах помогло найти растворители и катализаторы, позволившие значительно расширить самую область реакций водородного обмена. Кроме того, знание закономерностей кислотно-основного взаимодействия помогло предвидеть, какие факторы должны влиять па водородный обмен. [c.8]

    Водородный обмен в связях водорода с любыми элементами катализируется кислотами или основаниями. В соответствии с этим следует различать водородный обмен кислотный, основный, а также амфотерный (между одинаковыми частицами разного изотопного состава). [c.100]

    Из спектра этанола можно заключить, что на спин-спиновое взаимодействие сильно влияет быстрый межмолекулярный химический обмен. В ЯМР-спектре очень чистого образца спирта, не содержащего кислотных или основных примесей, пик О—Н расщепляется на триплет, как и следовало ожидать, если учесть расщепления пика этого протона вследствие взаимодействия с группой СНг. Пик СНг в свою очередь, помимо расщепления в результате взаимодействия с —СНз, расщепляется также из-за взаимодействия с протоном у кислорода. Но любые кислотные или основные загрязнения катализируют очень быстрый обмен протонов между гидроксильными группами, причем обмен протонов происходит с такой скоростью, что за короткий промежуток времени у кислорода успевает побывать очень много разных протонов, и в спектре метиленовых протонов проявляется лишь среднее из их ядерных спинов. Поэтому получается усредненный пик без тонкой структуры, которая могла бы возникнуть вследствие расщепления из-за взаимодействия с группой О—Н. [c.287]


    Ввиду биологической важности производных адениловой кислоты основное внимание было сосредоточено на ацил- и аминоацил-ангидридах аденозин-5 -фосфата. Однако в клетках асцитной карциномы Эрлиха было обнаружено производное аспарагиновой кислоты и уридин-5 -фосфата [306], а в экстрактах из дрожжей (Гоги1ор815 ШШз) отмечено также присутствие аспарагинового, глутаминового, аргининового и аланинового производных уридин-5 -пирофосфата [307]. Из печени и лактирующих млечных желез выделены производные глутаминовой и аспарагиновой кислот и аденозин-5 -пирофосфата [308]. В связи с рассмотрением такого рода соединений интересно отметить, что в пекарских дрожжах обнаружена обусловленная нуклеозид-5 -трифосфатом активация пептидов, которая связана с протеолитическими процессами (поскольку к диализированной неочищенной фракции белка не было добавлено никаких аминокислот или пептидов). На 1 моль образовавшегося (из активированного пептида) гидроксамата приходилось стехио-метрическое количество освобожденного неорганического фосфата. Та же ферментативная фракция катализирует обмен радиоактивного фосфата с каждым из четырех рибонуклеозид-5 -трифосфатов [309]. [c.231]

    Ионизационный механизм (7) надо считать типичным для медленного обмена с основными донорами. Ему благоприятствуют факторы, облегчающие первую ступень ионизации — основность среды или присутствие основных катализаторов — и заместители, уменьшающие электронную плотность на атоме углерода в обменивающейся связи С—Н. Влияние заместителей, как известно, проявляется сложным образом и далеко не всегда может быть однозначно предсказано. Однако можно привести ряд примеров, где оно находится в простых соотношениях со способностью к обмену [2, 31. Метан, этан и бензол не обменивают водорода с водой, но в нитрометане, нитроэтане и 1, 3, 5-тринитробензоле обмен идет и катализируется щелочами. Первые способны перегруппировываться в ациформы с отрывом протона от связи С —Н. В присутствии щелочей обмен также идет в ацетамиде и ацетонитриле. В этих примерах проявляется притяжение электронов отрицательными группами N02, N и СО. Увеличение способности к ионизации связи С—Н около тройной связи С С обнаруживается в легком обмене ацетилена с водой в присутствии щелочей. В обмене по ионизационному механизму весьма большую роль играет о — я-сопряжение, значение которого для разных реакций органической химии было показано А. Н. Несмеяновым [19]. Зависимость обмена а-водорода от сопряжения в цепи Н—С—С=0 была подтверждена [20], в циклических кетонах, ацетилацетона-тах и Дибензоилметане, а затем [23] в углеводородах. Обмен в метиленовой группе ацетилацетона и ацетоуксусного эфира идет значительно быстрее, чем в ацетоне, из-за участия в сопряжении двух групп С=0, присоединенных к а-углероду. По той же причине обмен сравнительно легко идет в метиленовой группе малоновых эфиров и цианоуксусного эфира, что можно сопоставить с известной способностью их к конденсации с карбонильными со- [c.59]

    Описываемый фермент имеет молекулярную массу около 5000 и состоит из большого числа блоков со сложной структурой. Он катализирует очень многие реакции, однако его основная роль сводится к катализу обменных реакций глутамата и глутамина и катализу образования амида а-кетоглутаровой кислоты  [c.106]

    Влияние химического обмена между координационной сферой и массой раствора на времена релаксации. Измеряемые на опыте времена релаксации. При обсуждении процессов релаксации мы всегда принимали, что магнитное поле парамагнитного иона сильнее влияет на ядра координированных молекул лигандов и релаксация происходит в основном в первых координационных сферах ионов. Влияние парамагнитного иона на все другие молекулы лиганда (или растворителя) распространяется вследствие быстрого химического обмена лигандами между внутренней сферой иона и остальной массой растворителя, так что за время релаксации все ядра успеют побывать вблизи парамагнитного иона. Однако возможны ситуации, когда магнитная релаксация вблизи парамагнитного иена происходит быстро, но ядра живут в окружении иона слишком долго, в результате чего катализирующее ядерную релаксацию действие парамагнитных ионов уменьшается. Эти случаи возможны при исследовании водных растворов никеля (П), хрома (П1), ванадила, аминных комплексов меди (И) и др. Молекулы лигандов в этих растворах разделяются на две категории молекулы в первой координационной сфере и молекулы лигандов в объеме растворителя. Происходящий между ними химический обмен определяет измеряемые на опыте времена релаксации. Подобная ситуация наблюдалась Герцем 76], исследовавшим методом ЯМР химическую реакцию типа [c.24]

    Известно, что металлы УИ1 группы, катализирующие реакцию присоединения водорода к олефинам, одновременно катализируют ряд других реакций, протекающих с участием водорода, таких, как перемещение двойных связей, ыс-транс-изомеризация, водородный обмен, причем наблюдаются весьма заметные различия в селективности действия металлов. В настоящем сообщении мы ограничимся обсуждением поведения металлов УИ1 группы в реакции перемещения двойных связей в олефинах в условиях неполного гидрирования олефинов в жидкой фазе прн атмосферном давлении и температурах, близких к комнатной. В этих условиях особенно отчетливо проявляется разница в поведении отдельных металлов [1—3]. Недавно была исследована реакция неполного гидрирования изомерных гексенов с двойной связью в -положении в среде этилового спирта при 20° С в присутствии палладиевой [4] и платиновой черни [5]. В присутствии основной реакцией была реакция гидрирования, а в присутствии Р(1 изомеризация превалировала над гидрированием, при-причем гексены, содержащие два водородных атома в аллильном положении (гексен-1 и 2-метилпентен-1), изомеризовались с больщей скоростью, чем гексены, обладающие одним таким атомом водорода (З-метилпентен-1 и [c.220]


    На.ми предложен метод синтеза алкильных эфиров салициловой кислоты с К С3 в алкильном остатке переэтерификацией метилсалицилата спиртами в присутствии катализаторов основного характера — 5—10%-ных растворов алкоголятов щелочных и щелочноземельных металлов, Серная кислота и л-толуолсульфохлорид (в количестве 10 мол. %) не катализируют обмен алкоксильной группы в салицилатах. [c.236]

    Так как реакции, катализируемые аминами, имеют очень много сходных черт, то можно предположить, что если фермент катализирует одну из них, то он способен катализировать и другие. Для альдолазы, расщепляющей 2-кето-3-дезокси-6-фосфоглюконат до пировиноградной кислоты и глицеральдегид-З-фосфата, было найдено, что это действительно так [127]. Помимо катализа альдольной конденсации, этот фермент катализирует енолизацию производных пировиноградной кислоты (на что указывает быстрый обмен водорода в метильной группе субстрата), а также декарбоксилирование оксалоацетата, которое протекает лишь в 200 раз медленнее, чем суммарная реакция. Кроме того, интересно отметить, что этот фермент подвергается необратимому ингибированию под действием бромзамещен-ного пирувата. Этот ингибитор присоединяется, по-видимому, к ферменту так же, как и пируват, однако затем он инактивирует фермент, алкилируя некоторую основную группу активного центра. Не исключено, что эта основная группа участвует в механизме ферментативного действия при [c.106]

    Высказано предположение [51, что изомеризация проходит через стадию образования карбаниона. Общность реакций изомеризации и дейтерообмена, а также их принадлежность к классу кислотно-основных процессов не вызывает сомнений. В таком случае следует ожидать, что на твердом дейтерированном амиде, безразлично Са(К1)2)2 или KND2, содержащем адсорбированный дейтер о аммиак, наряду с изомеризацией алкена может произойти замещение водорода на дейтерий. В связи с тем, что амид калия в жидком дейтероаммиаке катализирует обменную реакцию не только в алкенах, но и в других углеводородах, в частности ароматических, мы ожидали, что в последних возможен изотопный обмен водорода и при гетерогенном катализе твердыми дейтерированными амидами. В этом предварительном сообщении излагаются результаты опытов, при которых [c.612]

    В-третьих, и это самое главное, при низкой скорости электродного процесса большое значение начинают приобретать электрохимически активные примеси в растворе. При высоком окислительном потенциале оксред-системы О21Н2О многие восстановители, в том числе большинство органических веществ, приобретают электрохимическую активность на платине. Обычный уровень концентрации примесей в растворе, на который следует ориентироваться, составляет 10- М, а их максимальный вклад в кинетику электродного процесса (в данном случае это параллельно протекающее окисление органических веществ или других восстановленных форм на электроде) достигает 5-10- А-СМ- . Это значение сравнимо с током обмена кислородного электрода на платине и понятно, что обратимый кислородный электрод можно реализовать, либо снизив до 10- —10- ° М, концентрацию электрохимически активных примесей, либо существенно увеличив скорость основной электродной реакции. Реальность обоих путей была доказана экспериментально концентрацию примесей удавалось уменьшить путем длительного предварительного электролиза раствора. Некоторые материалы более активно, чем платина, катализируют электронный обмен в системе О21Й2О, и потому более пригодны для создания обратимого кислородного электрода. [c.544]

    Виндаус выделил витамин Bi в чистом виде [6] и в 1932 г. установил его эмпирическую формулу С12Н ig0N4S l2-HjO. Витамин Bj имеет важное значение для животного организма. Он входит в состав фермента карбокси-лазы, катализирующего реакции декарбоксилирования пировиноградной кислоты и других а-кетокислот. При недостатке тиамина в организме происходит накопление пировиноградной кислоты — продукта обмена углеводов, что нарушает нормальную функцию нервной системы и вызывает заболевание полиневритом (бери-бери). Тиамин излечивает эту болезнь. Кроме того, дифосфат тиамина входит в состав многих других ферментов в качестве кофермента, связанного с апоферментом — белком. Сюда относятся и ферменты, катализирующие реакции обмена углеводов типа альдоль-ных конденсаций и др. Витамин Bj связан также с функцией органов кроветворения, участвует в обмене воды, углеводов, жиров и минеральннх солей [7, 8, 9, 101. Витамином В богаты дрожжи (пивные и пекарские) и злаки, не очищенные от отрубей. Ржаной, а также пшеничный цельный хлеб, крупы (в особенности гречневая) являются для человека основным источником витамина Bj. [c.64]

    Эта книга — о непрерывных, сложных последовательностях химических реакций, благодаря которым клетки растут и делятся, питаются и выделяют шлаки, движутся и сообш аются друг с другом. Тысячи реакций, каждую из которых катализирует свой специфический фермент, связаны между собой в разветвленные и переплетающиеся последовательности, составляя в итоге сложнейшую сеть. Описанию совокупности этих реакций, называемой метаболизмом или обменом веществ, и посвящена в основном данная книга. [c.11]

    В виде свободных металлов хром, молибден, вольфрам и уран катализируют в основном реакции, протекающие с участием водорода к ним относятся орто-пара-преврашше водорода [14], рекомбинация атомов водорода [9—11]. диссоциация водорода [822]. изотопный обмен дейтерия с водородом [977], углеводородами [15, 473, 810, 811] и кислородсодержащими соединениями [807], разложение [468, 823, 824] и синтез [813, 999, 1000] аммиака, дегидроконденсация метана [473] и некоторые другие. [c.577]

    Изученные примеры такой реакции — изомеризация 1-фепилаллиловых эфиров бензойной и ге-нитробензойной кислот, которые были исследованы детально с использованием в качестве апротного растворителя хлорбензола. При отсутствии кислот эти реакции мономолекулярны и слегка катализируются нейтральными солями [178, 179). Эксперименты с мечеными атомами показали, что при добавке меченого аниона он частично включается как в перегруппированный, так и в неперегруппированный продукт, в то время как ацильный кислород исходного вещества переходит в основном в алкильный кислород продукта перегруппировки. Далее реакция перегруппировки протекает быстрее, чем обмен в положении 3. Эти результаты отражены в схеме 7  [c.241]

    Синтез (регенерация) АТР осуществляется в основном с помощью трех процессов фотосинтетического фосфорилирования (разд. 12.2), окислительного фосфорилирования (фосфорилирование в дыхательной цепи, разд. 7.4) и фосфорилирования на уровне субстрата (разд. 7.2.1). Два первых процесса сходны между собой в том, что АТР образуется в них при участии АТР-синтазы. Субстратное фосфорилирование может происходить при различных реакциях промежуточного метаболизма. В обмене углеводов важнейшие реакции, приводящие к регенерации АТР, катализируются фосфоглицераткиназой, пируваткиназой и аце таткиназой. Бактерии и дрожжи, сбраживающие сахара, располагают лишь тем АТР, который образуется с помощью этих ферментов. Во всех таких процессах фосфорилирования (за редкими исключениями) акцептором фосфата служит аденозиндифосфат (ADP). Аденозинмонофос- [c.223]

    В то время как ацетил-КоА участвует во многих разнообразных обменных реакциях, роль сукцинил-КоА, образующегося в реакции (XIV.4), значительно более ограничена. Его основное назначение — обеспечить непрерывность цикла. Так как данная стадия — превращение сукцинил-КоА в сукцинат — высокоэкзерогонична, то энергия тиоэфирной связи, образованной на стадии 4, запасается в виде синтезированного нуклеозидтрифосфата. Реакция катализируется сукцинат-тиокипазой и выглядит следующим образом  [c.355]

    Опубликован ряд работ, в которых описанный выше метод использовался для исследования скоростей. В общем случае изменение концентрации реагентов, увеличение кислотности или основности в реакциях, катализируемых кислотами и основаниями, или повышение температуры может приводить к набору спектров типа представленных на рис. 8-29,а—е, соответствующих увеличению скорости обмена. В специальном примере при исследовании системы НгО—Н2О2 было найдено, что протоны обмениваются быстро, так что при всех условиях при комнатной температуре возникает только один пик [45]. Из данных о ширине этого пика (изменяющейся в зависимости от скорости обмена) было найдено, что реакция обмена катализируется кислотами и основаниями. В литературе описан метод вычисления времен жизни по ширине пиков и предложен механизм обмена. Полный и строгий анализ обменного уширения можно найти в работе Каплана [46]. [c.308]

    Можно понять специалистов в области координационной химии, полагающих, что, хотя чисто органические ферменты — замечательные катализаторы сами по себе, однако в присутствии ионов металла их химическая активность существенно повышается, вследствие чего возрастает интерес к ним с точки зрения химии. Известно много примеров различных ферментов, содержащих и не содержащих металла, которые катализируют одну и ту же реакцию, действуют на один и тот же субстрат или образуют один и тот же продукт. Так, например, электрон-транспортные белки могут содержать флавины, железопорфирины или ферредоксины, а ферменты, катализирующие восстановление перекиси водорода органическими субстратами, могут также содержать или флавины, или железопорфирины (разд. 8.1). Однако есть и другие реакции, которые, насколько это известно в настоящее время, могут происходить только в присутствии ферментов, содержащих переходные металлы это фиксация азота (разд. 9.2), восстановление нитрата до нитрита (см., в частности, 132]) и некоторые реакции изомеризации, в которых участвуют кобальткорриноиды (разд. 10.2) [18, 1811. И несомненно, должны существовать многие реакции, которые более эффективно катализируются ферментами, содержащими переходные металлы. Эти металлобелковые комплексы или металлоферменты участвуют во многих процессах биологического обмена веществ, однако две реакции заслуживают специального упоминания по двум причинам. Во-первых, эти реакции представляют основной путь, по которому молекулярный азот или нитрат-ионы включаются в биологический обмен. Во-вторых, они тесно связаны с основными способами генерации и конверсии энергии в биологии как переносчики электронов и, возможно, в процессе выделения кислорода в хлоропластах как переносчики электронов и в реакции с кислородом, сопряженной с фосфорилированием и, наконец, при выделении водорода и метана при анаэробной ферментации. [c.134]

    Металлы и полупроводники (окислы и сульфиды металлов) катализируют в основном окислительно-восстановительные реакции (металлы — реакции гидрирования и дегидрирования, гидрогенолиз при нормальном давлении, полупроводники — реакции окисления при участии кислорода и гидрирование при повышенном давлении). Диэлектрики (твердые кислоты, основания и соли) катализируют реакции, сопровождаюшиеся обменом протонов — реакции гидратации, дегидратации, конденсации, полимеризации, изомеризации, крекинга. [c.128]

    Простейщим случаем (К==Н) является гидратация карбонильных соединений. В одной из ранних работ исследовалась обратимая гидратация углекислого газа С02- -Н20 Н2С0 , в которой происходит общий кислотно-основной катализ [60]. Кислотно-основной катализ имеет место и при гидратации ацетальдегида в водном растворе [61[ и при диссоциации этого гидрата в водном растворе ацетона [62]. Карбонильная группа кетонов гидратируется лишь в слабой степени, но кинетику процесса можно изучать, наблюдая степень обмена изотопа О между ацетоном и водой [63]. Этот обмен катализируется кислотами и основаниями. [c.25]

    Во время этого обратимого превращения, если оно идет в тяжелой воде, происходит в радикале обмен водорода на дейтерий как в эноле, так и в самом кетоне. Например, в ацетоне СНз-СО-СНз обмениваются все шесть а-атомов водорода, а в ацетоуксусном эфире СНз-СО-СНг-СООСгНа — пять а-атомов, ближайших к карбонильной группе. Этот обмен идет в присутствии кислот или оснований, которые также катализируют энолизацию. Было найдено [978, 771], что обмен, энолизация, галоидирование и рацемизация кетонов имеют не только сходную кинетику, но и приблизительно одинаковую скорость. Это указывает на то, что перечисленные реакции имеют одну общую медленную ступень с участием растворителя, без которого не мог бы происходить изотопный обмен. Изучение кислотно-основного катализа при обмене и энолизации, влияния на их кинетику замены НгО на ОгО в качестве растворителя и другие данные несомненно указывают на ионизационный механизм этих процессов. Они совершаются путем Переноса протонов (или дейтеронов) между реагирующим веществом и средой с образованием, в зависимости от кислотности среды, промежуточного оксониевого катиона или карбаниона. [c.393]

    Очевидно, в некоторых химических реакциях, особенно в тех, которые проводят в неполярных растворителях, скорость установления равновесия ионогенных протонов с растворителем может быть меньше, чем скорость других реакций. То же справедливо для ферментативных реакций. Так, например, фосфоглюкозоизомераза катализирует перенос протона в молекуле сахара от атома углерода 2 к атому 1 с образованием фруктозо-6-фосфата. То, что в этой реакции действительно переносится протон, почти не вызывает сомнений, так как меченый атом водорода в положении 2 в процессе переноса в положение 1 претерпевает частичный обмен с растворителем. Однако тот факт, что некоторые процессы переноса идут без обмена с растворителем, означает, что промежуточное соединение, в котором протон присоединен к основной группе активного центра фермента [схема (60)], может [c.168]

    Механизм антибиотического действия канамицина изучен еще очень мало. Установлено, что канамицин подавляет образование адаптивных энзимов (в частности, катализирующих окисление Ph OgH), но это подавление, очевидно, осуществляется не таким путем, как в случае стрептомицина, поскольку у бактерий, сделавшихся устойчивыми к одному из этих антибиотиков, другой антибиотик по-прежнему остается способным подавлять рассматриваемый процесс . Имеются указания 6 , что основной процесс метаболизма, угнетаемый канамицином, связан с окислительным обменом чувствительных к нему бактерий это подтверждается наблюдением, что кислоты цикла Кребса подавляют действие антибиотика. [c.733]

    Саркоплазматические белки растворимы в воде и слабых солевых растворах. Основную массу их составляют белки-ферменты, локализованные главным образом в митохондриях и катализирующие процессы окислительного фосфорилирования, а также многие ферменты гликолиза, азотистого и липидного обменов, находящиеся в саркоплазме. К этой группе относится также белок миоглобин, который связывает кислород с большим сродством, чем гемоглобин, и депонирует молекулярный кислород в мышцах. В последнее время открыта группа саркоплазматических белков парвальбуминов, которые способны связывать ионы кальция, однако их физиологическая роль остается не выясненой. [c.296]


Смотреть страницы где упоминается термин обмен основно-катализируемый С обмен: [c.248]    [c.64]    [c.303]    [c.142]    [c.303]    [c.166]   
Химия гетероциклических соединений (2004) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

обмен основность



© 2024 chem21.info Реклама на сайте